1887

Abstract

A strictly anaerobic thiosulfate-reducing bacterium was isolated from a corroding offshore oil well in Congo and was designated strain SEBR 4207. Pure culture of the strain induced a very active pitting corrosion of mild steel, with penetration rates of up to 4 mm per year. This constitutes the first experimental evidence of the involvement of thiosulfate reduction in microbial corrosion of steel. Strain SEBR 4207 cells were vibrios (3 to 5 by 1 µm), stained gram negative, and possessed lateral flagella. Spores were not detected. Optimum growth occurred in the presence of 3% NaCl at pH 7.0 and 42°C. Strain SEBR 4207 utilized peptides and amino acids, but not sugars or fatty acids. It fermented serine, histidine, and Casamino Acids, whereas arginine, glutamate, leucine, isoleucine, alanine, valine, methionine, and asparagine were only used in the presence of thiosulfate. Peptides were fermented to acetate, isobutyrate, isovalerate, 2-methylbutyrate, H2, and CO2. The addition of either thiosulfate or sulfur but not sulfate increased peptide utilization, growth rate, and biomass; during growth, H2S was produced and a concomitant decrease in H2 was observed. The addition of either thiosulfate or sulfur also reversed H2 inhibition. 16S rRNA sequence analysis indicates that strain SEBR 4207 is distantly related to members of the genus (83% similarity). Because the phenotypic and phylogenetic characteristics cannot be assigned to any described genus, strain SEBR 4207 is designated as a new species of a new genus, gen. nov., sp. nov. Strain SEBR 4207 has been deposited in the Deutsche Sammlung von Mikroorganismen und zellkulturen GmbH (= DSM 11002).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-47-3-818
1997-07-01
2022-05-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/47/3/ijs-47-3-818.html?itemId=/content/journal/ijsem/10.1099/00207713-47-3-818&mimeType=html&fmt=ahah

References

  1. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S. 1979; Methanogens: réévaluation of a unique biological group. Microbiol. Rev. 43:260–296
    [Google Scholar]
  2. Bernard F. P., Connan J., Magot M. 1992 Indigenous microorganisms in connate water of many oil fields: a new tool in exploration and production techniques, paper SPE 24811. 467–476 Proceedings of the 67th Annual Technical Conference and Exhibition of the Society of Petroleum Engineers Society of Petroleum Engineers Inc.; Richardson, Tex.:
    [Google Scholar]
  3. Bonch-Osmolovskaya E. A. 1994; Bacterial sulfur reduction in hot vents. FEMS Microbiol. Rev. 15:65–77
    [Google Scholar]
  4. Bonch-Osmolovskaya E. A., Stetter K. O. 1991; Interspecies hydrogen transfer in cocultures of thermophilic Archaea. Syst. Appl. Microbiol 14:205–208
    [Google Scholar]
  5. Brefort G., Magot M., Ionesco H., Sebald M. 1977; Characterization and transferability of Clostridium perfringens plasmids. Plasmid 1:52–66
    [Google Scholar]
  6. Campaignolle X., Luo J. S., Bullen J., White D. C., Guezennec J., Crolet J.-L. 1993 Stabilization of localized corrosion of carbon steel by sulfatereducing bacteria, paper 93302. Corrosion 93 National Association of Corrosion Engineers; Houston, Tex.:
    [Google Scholar]
  7. Campaignolle X., Caumette P., Dabosi F., Crolet J.-L. 1996 The role of thiosulfate in the microbially induced pitting of carbon steel, paper 96273. Corrosion 96 National Association of Corrosion Engineers; Houston, Tex.:
    [Google Scholar]
  8. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal. Biochem. 81:461–466
    [Google Scholar]
  9. Cayol J.-L., Ollivier B., Patel B. K. C., Prensier G., Guezennec J., Garcia J.-L. 1994; Isolation and characterization of Halothermothrix orenii gen. nov., sp. nov., a halophilic, thermophilic, fermentative, strictly anaerobic bacterium. Int. J. Syst. Bacteriol. 44:534–540
    [Google Scholar]
  10. Cline J. D., Richards F. A. 1969; Oxygenation of hydrogen sulfide in seawater at constant salinity, temperature, and pH. Environ. Sci. Technol. 3:838–843
    [Google Scholar]
  11. Collins M. D., Lawson P. A., Willems A., Cordoba J. J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J. A. E. 1994; The phylogeny of the genus Clostridium·, proposal of five new genera and eleven new species combinations. Int. J. Syst. Bacteriol. 44:812–826
    [Google Scholar]
  12. Cord-Ruwisch R. 1985; A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J. Microbiol. Methods 4:33–36
    [Google Scholar]
  13. Crolet J.-L., Daumas S., Magot M. 1993 pH regulation by sulfatereducing bacteria, paper 303. Corrosion 93 National Association of Corrosion Engineers; Houston, Tex.:
    [Google Scholar]
  14. Crolet J.-L., Magot M. 1996; Non SRB sulfidogenic bacteria from oil field production facilities. Mater. Performance March60–64
    [Google Scholar]
  15. Cypionka H., Widdel F., Pfennig N. 1985; Survival of sulfate-reducing bacteria after oxygen stress, and growth in sulfate-free oxygen-sulfide gradients. FEMS Microbiol. Lett. 31:39–45
    [Google Scholar]
  16. Daumas S., Magot M., Crolet J.-L. 1993; Measurement of the net production of acidity by a sulphate-reducing bacterium: experimental checking of theoretical models of microbially influenced corrosion. Res. Microbiol. 144:327–332
    [Google Scholar]
  17. Fardeau M.-L., Cayol J.-L., Magot M., Ollivier B. 1993; H2 oxidation in the presence of thiosulfate, by a Thermoanaerobacter strain isolated from an oil-producing well. FEMS Microbiol. Lett. 113:327–332
    [Google Scholar]
  18. Faudon C., Fardeau M.-L., Heim J., Patel B. K. C., Magot M., Ollivier B. 1995; Peptide and amino acid oxidation in the presence of thiosulfate by members of the genus Thermoanaerobacter. Curr. Microbiol. 31:152–157
    [Google Scholar]
  19. Felsenstein J. 1993 PHYLIP (Phylogenetic Inference Package), version 3.51c Department of Genetics; University of Washington, Seattle.:
    [Google Scholar]
  20. Grassia G. S., McLean K. M., Glenat P., Bauld J., Sheehy A. J. 1996; A systematic survey for thermophilic fermentative bacteria and archaea in high temperature petroleum reservoirs. FEMS Microbiol. Ecol. 21:47–58
    [Google Scholar]
  21. Hobbie J. E., Daley R. J., Jasper S. 1977; Use of Nuclepore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microbiol. 33:1225–1228
    [Google Scholar]
  22. Jorgensen B. B. 1990; A thiosulfate shunt in the sulfur cycle of marine sediments. Science 249:152–154
    [Google Scholar]
  23. Jukes T. H., Cantor C. R. 1969 Evolution of protein molecules. 21–132 Munro H. N.ed Mammalian protein metabolism Academic Press; New York, N.Y.:
    [Google Scholar]
  24. Kumar S., Tamura K., Nei M. 1993 MEGA: Molecular Evolutionary Genetic Analysis, version 1.0. The Pennsylvania State University; University Park.:
    [Google Scholar]
  25. Larsen N., Olsen G. J., Maidak B. L., McCaughey M. J., Overbeek R., Macke T. J., Marsh T. L., Woese C. R. 1993; The ribosomal database project. Nucleic Acids Res 21:Suppl.3021–3023
    [Google Scholar]
  26. Love C. A., Patel B. K. C., Nichols P. D., Stackebrandt E. 1993; Desulfotomaculum australicum, sp. nov., a thermophilic sulfate-reducing bacterium isolated from the Great Artesian Basin of Australia. Syst. Appl. Microbiol. 16:244–251
    [Google Scholar]
  27. Magot M., Mondeil L., Ausseur J., Seureau J. 1988 Detection of sulfate-reducing bacteria. 37–52 Gaylarde C. C., Morton J. G.ed Biocorrosion, proceedings of a joint meeting between the Biodeterioration Society and the French Corrosion Group Biodeterioration Society; London, United Kingdom.:
    [Google Scholar]
  28. Magot M., Carreau L., Cayol J.-L., Ollivier B., Crolet J.-L. 1995 Sulphide-producing, not sulphate-reducing anaerobic bacteria presumptively involved in bacterial corrosion. 293–300 Sequeira C. A. C.ed Proceedings of the 3rd European Federation of Corrosion Workshop on Microbial Corrosion, Portugal The Institute of Materials; London, United Kingdom.:
    [Google Scholar]
  29. Magot M., Ravot G., Ollivier B., Patel B. K. C., Garcia J.-L. 1996 Dethiosulfovibrio peptidovorans, gen. nov., sp. nov., a new anaerobic halophilic thiosulfate-reducing bacterium isolated from an oil field, abstr. R-24. 473 Abstracts of the 96th General Meeting of the American Society for Microbiology 1996 American Society for Microbiology; Washington, D.C.:
    [Google Scholar]
  30. Maidak B. L., Olsen G. J., Larsen N., Overbeek R., McCaughey M. J., Woese C. R. 1996; The ribosomal database project. Nucleic Acids Res. 24:82–85
    [Google Scholar]
  31. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol. 39:159–167
    [Google Scholar]
  32. Mueller R. F., Nielsen P. H. 1996; Characterization of thermophilic consortia from two souring oil reservoirs. Appl. Environ. Microbiol. 62:3083–3087
    [Google Scholar]
  33. Ollivier B., Hatchikian C. E., Prensier G., Guezennec J., Garcia J.-L. 1991; Desulfohalobium retbaense gen. nov., sp. nov., a halophilic sulfatereducing bacterium from sediments of a hypersaline lake in Senegal. Int. J. Syst. Bacteriol. 41:74–81
    [Google Scholar]
  34. Ollivier B., Cayol J.-L., Patel B. K. C., Magot M., Fardeau M.-L., Garcia J.-L. 1997; Methanoplanus petrolearius, sp. nov., a novel methanogenic bacterium from an oil-producing well. FEMS Microbiol. Lett. 147:51–56
    [Google Scholar]
  35. Pfennig N., Widdel F. 1982; The bacteria of the sulphur cycle. Phil. Trans. R. Soc. Lond B298:433–441
    [Google Scholar]
  36. Ravot G., Magot M., Fardeau M.-L., Patel B. K. C., Prensier G., Egan A., Garcia J.-L., Ollivier B. 1995; Thermotoga elfii sp. nov., a novel thermophilic bacterium from an African oil-producing well. Int. J. Syst. Bacteriol. 45:308–314
    [Google Scholar]
  37. Ravot G., Magot M., Ollivier B., Patel B. K. C., Ageron E., Grimont P. A. D., Thomas P., Garcia J.-L. 1997; Haloanaerobium congolense sp. nov., an anaerobic, moderately halophilic, thiosulfate- and sulfur-reducing bacterium from an African oil field. FEMS Microbiol. Lett. 147:81–88
    [Google Scholar]
  38. Redburn A. C., Patel B. K. C. 1993; Phylogenetic analysis of Desulfotomaculum thermobenzoicum using polymerase chain reaction-amplified 16S rRNA-specific DNA. FEMS Microbiol. Lett. 113:81–86
    [Google Scholar]
  39. Saiki T., Kobayashi Y., Kawagoe K., Beppu T. 1985; Dictyoglomus thermophilus gen. nov., sp. nov., a chemoorganotrophic, anaerobic, thermophilic bacterium. Int. J. Syst. Bacteriol. 35:253–259
    [Google Scholar]
  40. Schauder R., Kroger A. 1993; Bacterial sulphur respiration. Arch. Microbiol. 159:491–497
    [Google Scholar]
  41. Stetter K. O., Gaag G. 1983; Reduction of molecular sulphur by methanogenic bacteria. Nature 305:309–311
    [Google Scholar]
  42. Tardy-Jacquenod C., Caumette P., Matheron R., Lanau C., Arnauld O., Magot M. 1996; Characterization of sulfate-reducing bacteria isolated from oil-field waters. Can. J. Microbiol. 42:259–266
    [Google Scholar]
  43. Wiegel J., Ljungdahl L. G. 1981; Thermoanaerobacter ethanolicus gen. nov., sp. nov., a new extreme thermophilic, anaerobic bacterium. Arch. Microbiol. 128:343–348
    [Google Scholar]
  44. Winker S., Woese C. R. 1991; A definition of the domains Archaea, Bacteria and Eucarya in terms of small subunit ribosomal RNA characteristics. Syst. Appl. Microbiol. 13:161–165
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-47-3-818
Loading
/content/journal/ijsem/10.1099/00207713-47-3-818
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error