1887

Abstract

To develop a strategy for rapid species assignment and strain differentiation of complex (MAC) organisms, the sequence of a 360-bp region of the gene () encoding a 65-kDa heat shock protein was determined for 56 isolates, including 21 patient isolates and 35 reference strains. Eleven alleles were identified, and there was no sharing of alleles between strains classified as and based on serovar and species-specific DNA hybridization probes. Phylogenetic analysis showed that 30 strains had one of two alleles which were found in known organisms, 23 strains had one of six alleles allied with known organisms, and three MAC isolates had one of three alleles that differed substantially from the consensus and sequences. Estimates of strain relationships based on the sequences of and the 16S-23S ribosomal DNA internal transcribed spacer were similar. Automated DNA sequencing of a 360-bp region of the gene from MAC organisms provides a rapid and unambiguous marker system for strain differentiation and permits specific assignment of these acid-fast organisms for diagnostic purposes.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-47-2-414
1997-01-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/47/2/ijs-47-2-414.html?itemId=/content/journal/ijsem/10.1099/00207713-47-2-414&mimeType=html&fmt=ahah

References

  1. Arbeit R. D., Slutsky A., Barber T. W., Maslow J. N., Niemczyk S., Falkinham J. O. III, O’Connor G. T., von Reyn C. F. 1993; Genetic diversity among strains of Mycobacterium avium causing monoclonal and polyclonal bacteremia in patients with AIDS. J. Infect. Dis 167:1384–1390
    [Google Scholar]
  2. Boddinghaus B., Wolters J., Hiekens W., Bottger E. C. 1990; Phylogenetic analysis and identification of different serovars of Mycobacterium intracellulare at the molecular level. FEMS Microbiol. Lett 70:197–204
    [Google Scholar]
  3. Burki D. R., Bernasconi C., Bodmer T., Telenti A. 1995; Evaluation of the relatedness of strains of Mycobacterium avium using pulsed-field gel electrophoresis. Eur. J. Clin. Microbiol. Infect. Dis 14:212–217
    [Google Scholar]
  4. Chin D. P., Reingold A. L., Stone E. N., Vittinghoff E., Horsburgh C. R. Jr., Simon E. M., Yajko D. M., Hadley W. K., Ostroff S. M., Hopewell P. C. 1994; The impact of Mycobacterium avium complex bacteremia and its treatment on survival of AIDS patients—a prospective study. J. Infect. Dis 170:578–584
    [Google Scholar]
  5. Crawford J. T., Bates J. H. 1985; Phage typing of the Mycobacterium avium-intracellulare-scrofulaceum complex: a study of strains of diverse geographic and host origin. Am. Rev. Respir. Dis 132:386–389
    [Google Scholar]
  6. Crawford J. T., Bates J. H. 1986; Analysis of plasmids in Mycobacterium avium-intracellulare isolates from persons with acquired immunodeficiency syndrome. Am. Rev. Respir. Dis 134:659–661
    [Google Scholar]
  7. Crawford J. T., Fitzhugh J. K., Bates J. H. 1981; Phage typing of the Mycobacterium avium-intracellulare-scrofulaceum complex. Am. Rev. Respir. Dis 124:559–562
    [Google Scholar]
  8. De Smet K. A. L., Brown I. N., Yates M., Ivanyi J. 1995; Ribosomal internal transcribed spacer sequences are identical among Mycobacterium avium-intracellulare complex isolates from AIDS patients, but vary among isolates from elderly pulmonary disease patients. Microbiology 141:2739–2747
    [Google Scholar]
  9. Feizabadi M. M., Robertson I. D., Cousins D. V., Dawson D., Chew W., Gilbert G. L., Hampson D. J. 1996; Genetic characterization of Mycobacterium avium isolates recovered from humans and animals in Australia. Epidemiol. Infect 116:41–49
    [Google Scholar]
  10. Frothingham R., Wilson K. H. 1993; Sequence-based differentiation of strains in the Mycobacterium avium complex. J. Bacteriol 175:2818–2825
    [Google Scholar]
  11. Frothingham R., Wilson K. H. 1994; Molecular phylogeny of the Mycobacterium avium complex demonstrates clinically meaningful divisions. J. Infect. Dis 169:305–312
    [Google Scholar]
  12. Fry K. L., Meissner P. S., Falkinham J. O. III 1986; Epidemiology of infection by nontuberculous mycobacteria. VI. Identification and use of epidemiologic markers for studies of Mycobacterium avium, M. intracellulare, and M. scrofulaceum. Am. Rev. Respir. Dis 134:39–43
    [Google Scholar]
  13. Green E. P., Tizard M. L. V., Moss M. T., Thompson J., Winterbourne D. J., McFadden J. J., Herman-Taylor J. 1989; Sequence and characteristics of IS900, an insertion element identified in a human Crohn’s disease isolate of Mycobacterium paratuberculosis. Nucleic Acids Res 17:9063–9073
    [Google Scholar]
  14. Guerrero C., Bernasconi C., Burki D., Bodmer T., Telenti A. 1995; A novel insertion element from Mycobacterium avium, ÏS1245, is a specific target for analysis of strain relatedness. J. Clin. Microbiol 33:304–307
    [Google Scholar]
  15. Guthertz L. S., Damsker B., Bottone E. J., Ford E. G., Midura T. F., Janda J. M. 1989; Mycobacterium avium and Mycobacterium intracelluläre infections in patients with and without AIDS. J. Infect. Dis 160:1037–1041
    [Google Scholar]
  16. Hawkins J. E. 1977; Scotochromogenic mycobacteria which appear intermediate between Mycobacterium avium-intracellulare and Mycobacterium scrofulaceum. Am. Rev. Respir. Dis 116:963–964 Letter
    [Google Scholar]
  17. Horsburgh C. R. Jr., Havlik J. A., Ellis D. A., Kennedy E., Fann S. A, Dubois R. E., Thompson S. E. 1991; Survival of patients with acquired immune deficiency syndrome and disseminated Mycobacterium avium complex infection with and without antimycobacterial chemotherapy. Am. Rev. Respir. Dis 144:557–559
    [Google Scholar]
  18. Horsburgh C. R. Jr., Selik R. M. 1989; The epidemiology of disseminated nontuberculous mycobacterial infection in the acquired immunodeficiency syndrome (AIDS). Am. Rev. Respir. Dis 139:4–7
    [Google Scholar]
  19. Hoyt L., Oleske J., Holland B., Connor E. 1992; Nontuberculous mycobacteria in children with acquired immunodeficiency syndrome. Pediatr. Infect. Dis. J 11:354–360
    [Google Scholar]
  20. Ichiyama S., Shimokata K., Tsukamura M. 1988; The isolation of Mycobacterium avium complex from soil, water, and dusts. Microbiol. Immunol 32:733–739
    [Google Scholar]
  21. Inderlied C. B., Kemper C. A., Bermudez L. E. M. 1993; The Mycobacterium avium complex. Clin. Microbiol. Rev 6:266–310
    [Google Scholar]
  22. Jacobson M. A., Hopewell P. C., Yajko D. M., Hadley W. K., Lazarus E., Mohanty P. K., Modin G. W., Feigal D. W., Cusick P. S., Sande M. A. 1991; Natural history of disseminated Mycobacterium avium complex infection in AIDS. J. Infect. Dis 164:994–998
    [Google Scholar]
  23. Kapur V., Li L.-L., Hamrick M. R., Plikaytis B. B., Shinnick T. M., Telenti A, Jacobs W. R. Jr., Banerjee A., Cole S., Yuen K. Y., Clarridge J. E. III, Kreiswirth B. N., Musser J. M. 1995; Rapid Mycobacterium species assignment and unambiguous identification of mutations associated with antimicrobial resistance in Mycobacterium tuberculosis by automated DNA sequencing. Arch. Pathol. Lab. Med 119:131–138
    [Google Scholar]
  24. Kirschner P., Springer B., Vogel U., Meier A., Wrede A., Kiekenbeck M., Bange F.-C., Bôttger E. C. 1993; Genotypic identification of mycobacteria by nucleic acid sequence determination: report of a 2-year experience in a clinical laboratory. J. Clin. Microbiol 31:2882–2889
    [Google Scholar]
  25. Kunze Z. M., Portaels F., McFadden J. J. 1992; Biologically distinct subtypes of Mycobacterium avium differ in possession of insertion sequence \S901. J. Clin. Microbiol 30:2366–2372
    [Google Scholar]
  26. Kunze Z. M., Wall S., Appelberg R., Silva M. T., Portaels F., McFadden J. J. 1991; IS907, a new member of a widespread class of atypical insertion sequences, is associated with pathogenicity in Mycobacterium avium. Mol. Microbiol 5:2265–2272
    [Google Scholar]
  27. Lewis L. L., Butler K. M., Husson R. N., Mueller B. U., Fowler C. L., Steinberg S. M., Pizzo P. A. 1992; Defining the population of human immunodeficiency virus-infected children at risk for Mycobacterium avium-intracellulare infection. J. Pediatr 121:677–683
    [Google Scholar]
  28. Mazurek G. H., Hartman S., Zhang Y., Brown B. A, Hector J. S. R., Murphy D., Wallace R. J. Jr. 1993; Large DNA restriction fragment polymorphism in the Mycobacterium avium-M. intracellulare complex: a potential epidemiologic tool. J. Clin. Microbiol 31:390–394
    [Google Scholar]
  29. Meissner P. S., Falkinham J. O. III 1986; Plasmid DNA profiles as epidemiological markers for clinical and environmental isolates of Mycobacterium avium, Mycobacterium intracellulare, and Mycobacterium scrofulaceum. J. Infect. Dis 153:325–331
    [Google Scholar]
  30. Nightingale S. D., Byrd L. T., Southern P. M., Jockusch J. D., Cal S. X., Wynne B. A. 1992; Incidence of Mycobacterium avium-intracellulare complex bacteremia in human immunodeficiency virus-positive patients. J. Infect. Dis 165:1082–1085
    [Google Scholar]
  31. Pai S., Esen N., Musser J. M. Routine rapid species assignment in a clinical microbiology laboratory based on species specific allelic variation in the 65-kilodalton heat shock protein gene (hsp65). Arch. Pathol. Lab. Med in press
    [Google Scholar]
  32. Perez M. H., Fomukong N. G., Hellyer T., Brown I. N., Dale J. W. 1994; Characterization of ISHIO, a highly mobile genetic element from Mycobacterium avium. Mol. Microbiol 12:714–724
    [Google Scholar]
  33. Portaels F. 1978; Difficulties encountered in identification of M. avium-M. intracellulare, M. scrofulaceum, and related strains. Am. Rev. Respir. Dis 118:969 Letter
    [Google Scholar]
  34. Reznikov M., Leggo J. H., Dawson D. J. 1971; Investigation by séroagglutination of strains of the Mycobacterium intracellulare-M. scrofulaceum group from house dusts and sputum in southeastern Queensland. Am. Rev. Respir. Dis 104:951–953
    [Google Scholar]
  35. Rogall T., Wolters J., Flohr T., Bôttger E. C. 1990; Towards a phylogeny of species at the molecular level within the genus Mycobacterium. Int. J. Syst. Bacteriol 40:323–330
    [Google Scholar]
  36. Roiz M. P., Palenque E., Guerrero C., Garcia M. J. 1995; Use of restriction fragment length polymorphism as a genetic marker for typing Mycobacterium avium strains. J. Clin. Microbiol 33:1389–1391
    [Google Scholar]
  37. Saito H., Tomioka H., Sato K., Tasaka H., Dawson D. J. 1990; Identification of various serovar strains of Mycobacterium avium complex by using DNA probes specific for Mycobacterium avium and Mycobacterium intracellulare. J. Clin. Microbiol 28:1694–1697
    [Google Scholar]
  38. Sawyer S. 1989; Statistical tests for detecting gene conversion. Mol. Biol. Evol 6:526–538
    [Google Scholar]
  39. Shinnick T. 1987; The 65-kilodalton antigen of Mycobacterium tuberculosis. J. Bacteriol 169:1080–1088
    [Google Scholar]
  40. Soini H., Eerola E., Viljanen M. K. 1996; Genetic diversity among Mycobacterium avium complex Accuprobe-positive isolates. J. Clin. Microbiol 34:55–57
    [Google Scholar]
  41. Springer B., Stockman L., Teschner K., Roberts G. D., Bôttger E. C. 1996; Two-laboratory collaborative study on identification of mycobacteria: molecular versus phenotypic methods. J. Clin. Microbiol 34:296–303
    [Google Scholar]
  42. Swanson D. S., Pan X., Musser J. M. 1996; Identification and subspecific differentiation of Mycobacterium scrofulaceum by automated sequencing of a region of the gene (hsp65) encoding a 65-kilodalton heat shock protein. J. Clin. Microbiol 34:3151–3159
    [Google Scholar]
  43. Swofford D. L. 1991 PAUP: phylogenetic analysis using parsimony, version 3.1.1. Illinois Natural History Survey; Champaign:
    [Google Scholar]
  44. Telenti A., Marchesi F., Balz M., Bally F., Bôttger E. C., Bodmer T. 1993; Rapid identification of mycobacteria to the species level by polymerase chain reaction and restriction enzyme analysis. J. Clin. Microbiol 31:175–178
    [Google Scholar]
  45. Tomioka H., Saito H., Sato K., Tasaka H., Dawson D. J. 1993; Identification of Mycobacterium avium complex strains belonging to serovars 21-28 by three commercial DNA probe tests. Tuberc. Lung Dis 74:91–95
    [Google Scholar]
  46. Via L. E., Falkinham J. O. III 1993; 1S1141 and colonial variation in Mycobacterium intracellulare. GenBank accession number L10239
    [Google Scholar]
  47. Wallace R. J. Jr. 1987; Nontuberculous mycobacteria and water: a love affair with increasing clinical importance. Infect. Dis. Clin. N. Am 1:677–686
    [Google Scholar]
  48. Wasem C. F., McCarthy C. M., Murray L. W. 1991; Multilocus enzyme electrophoresis analysis of the Mycobacterium avium complex and other mycobacteria. J. Clin. Microbiol 29:264–271
    [Google Scholar]
  49. Wayne L. G., Good R. C., Bôttger E. C., Butler R., Dorsch M., Ezaki T., Gross W., Jonas V., Kilburn J., Kirschner P., Krichevsky M. I., Ridell M., Shinnick T. M., Springer B., Stackebrandt E., Tarnok I., Tarnok Z., Tasaka H., Vincent V., Warren N. G., Knott C. A., Johnson R. 1996; Semantide- and chemotaxonomy-based analyses of some problematic phenotypic clusters of slowly growing mycobacteria, a cooperative study of the International Working Group on Mycobacterial Taxonomy. Int. J. Syst. Bacteriol 46:280–297
    [Google Scholar]
  50. Wayne L. G., Good R. C., Krichevsky M. I., Blacklock Z., David H. L., Dawson D., Gross W., Hawkins J., Levy-Frebault V. V., McManus C., Portaels F., Rüsch-Gerdes S., Schroder K. H., Silcox V. A., Tsukamura M., Van Den Breen L., Yakrus M. A. 1991; Fourth report of the cooperative, open-ended study of slowly growing mycobacteria by the International Working Group on Mycobacterial Taxonomy. Int. J. Syst. Bacteriol 41:463–472
    [Google Scholar]
  51. Wayne L. G., Good R. C., Tsang A., Butler R., Dawson D., Groothuis D., Gross W., Hawkins J., Kilburn J., Kubin M., Schroder K. H., Silcox V. A., Smith C., Thorel M.-F., Woodley C., Yakrus M. A. 1993; Serovar determination and molecular taxonomic correlation in Mycobacterium avium, Mycobacterium intracellulare, and Mycobacterium scrofulaceum: a cooperative study of the International Working Group on Mycobacterial Taxonomy. Int. J. Syst. Bacteriol 43:482–489
    [Google Scholar]
  52. Wayne L. G., Sramek H. A. 1992; Agents of newly recognized or infrequently encountered mycobacterial diseases. Clin. Microbiol. Rev 5:125
    [Google Scholar]
  53. Yajko D. M., Chin D. P., Gonzalez P. C., Nassos P. S., Hopewell P. C., Reingold A. L., Horsburgh C. R. Jr., Yakrus M. A., Ostroff S. M., Hadley W. K. 1995; Mycobacterium avium complex in water, food, and soil samples collected from the environment of HIV-infected individuals. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol 9:176–182
    [Google Scholar]
  54. Yakrus M. A., Good R. C. 1990; Geographic distribution, frequency, and specimen source of Mycobacterium avium complex serotypes isolated from patients with acquired immunodeficiency syndrome. J. Clin. Microbiol 28:926–929
    [Google Scholar]
  55. Yakrus M. A., Reeves M. W., Hunter S. B. 1992; Characterization of isolates of Mycobacterium avium serotypes 4 and 8 from patients with AIDS by multilocus enzyme electrophoresis. J. Clin. Microbiol 30:1474–1478
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-47-2-414
Loading
/content/journal/ijsem/10.1099/00207713-47-2-414
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error