1887

Abstract

We describe a novel insertion sequence (IS) element, IS, which was found to be closely related to IS, which is found only in ; we found that these two IS eleemnts have a level of sequence identity of 61.5% and also have almost identical terminal inverted repeats. IS was present both and strains isolated from humans. In contrast, IS was absent from strains isolated from sheep. A DNA fingerprint analysis performed with anothe IS element, IS, which is present in and , revealed that isolates obtained from sheep are distinct from human isolates. Thus, human and ovine strains comprise two distinct populations, indicatng that little or no transmission occurs between sheep and humans. An IS-associated restriction frragment length polymorphism analysis revealed that strains isolated from sheep are genetically more polymorphic that the human population, which is genetically very homogeneous. This suggests that human strains diverged from a single clone only recently. IS is present in a subset of strains that were derived mainly from pigs and rabbits, suggesting that these strains and to have adapted to different hosts (sheep and humans). Once in the human host, probably acquired IS from In contrast to human isolates, strains produced polymorphic IS-related DNA fingerprint patterns.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-46-3-640
1996-07-01
2023-02-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/46/3/ijs-46-3-640.html?itemId=/content/journal/ijsem/10.1099/00207713-46-3-640&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J. Mol. Biol 215:403–410
    [Google Scholar]
  2. Arber W. 1990; Mechanisms in microbial evolution. J. Struct. Biol 104:107–11
    [Google Scholar]
  3. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Smith J. G., Seidman J. G., Doly J. 1987 Current protocols in molecular biology John Wiley & Sons; New York:
    [Google Scholar]
  4. Blot M. 1994; Transposable elements and adaptation of host bacteria. Genetics 93:5–12
    [Google Scholar]
  5. Chen W., Alley M. R., Manktelow B. W., Hopcroft D., Bennett R. 1988; Pneumonia in lambs inoculated with Bordetella parapertussis: bronchoalveolar lavage and ultrastructural studies. Vet. Pathol 25:297–303
    [Google Scholar]
  6. Coote J. G., Brownlie R. M. 1988 Genetics of virulence of Bordetella pertussis. 39–74 Wardlaw A. C., Parton R.ed Pathogenesis and immunity in pertussis John Wiley and Sons; New York:
    [Google Scholar]
  7. Craxton M. 1991; Linear amplification sequencing; a powerful method for sequencing DNA. Methods Enzymol 2:1–7
    [Google Scholar]
  8. Cullinane L. C., Alley M. R., Marshall R. B., Manktelow B. W. 1987; B. parapertussis from lambs. N.Z. Vet. J 35:175
    [Google Scholar]
  9. Dente L, Sollazo M., Baldari C., Cesareni G., Cortese R. 1985 The pEMBL family of single strand vectors. 101–107 Glover D. M.ed DNA cloning: a practical approach I IRL Press; Oxford:
    [Google Scholar]
  10. Flosdorf E. W., Bondi A., Felton H., McGuinness A. C. 1942; Studies with Haemophilus pertussis. X. Comparative antigenic analysis of Bacillus parapertussis and Haemophilus pertussis, phase I, with consideration of clinical significance. J. Pediatr 21:625–634
    [Google Scholar]
  11. Heininger U., Stehr K., Schmitt-Grohe S., Lorenz C, Rost R., Christenson P. D., Uberall M., Cherry J. D. 1994; Clinical characteristics of illness caused by Bordetella parapertussis compared with illness caused by Bordetella pertussis. Pediatr. Infect. Dis. J 13:306–309
    [Google Scholar]
  12. Hewlett E. L. 1990 Bordetella species. 1756–1762 Mandell G. L., Douglas R. G., Bennet J. E.ed Principles and practice of infectious diseases Churchill Livingstone, Inc.; New York:
    [Google Scholar]
  13. Kasuga T., Nakase Y., Ukishima K., Takatsu K. 1953; Studies on Haemophilus pertussis. Kitasato Arch. Exp. Med 27:21–28
    [Google Scholar]
  14. Kendrick P. L., Eldering G., Dixon M. K., Misner J. 1947; Mouse protection tests in the study of pertussis vaccines: a comparative series using intracerebral route of challenge. Am. J. Public Health 37:803–810
    [Google Scholar]
  15. Khattak M. N., Matthews R. C. 1993; Genetic relatedness of Bordetella species as determined by macrorestriction digests resolved by pulsed-field gel electrophoresis. Int. J. Syst. Bacteriol 43:659–664
    [Google Scholar]
  16. Linneman C. C., Perry E. B. 1977; Bordetella parapertussis’, recent experience and a review of the literature. Am. J. Dis. Child 13:560–563
    [Google Scholar]
  17. Livey L, Duggleby C. J., Robinson A. 1987; Cloning and nucleotide sequence analysis of the serotype 2 fimbrial subunit gene of Bordetella pertussis. Mol. Microbiol 1:203–209
    [Google Scholar]
  18. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular cloning: a laboratory manual Cold Spring Harbor Laboratory; Cold Spring Harbor, N.Y:
    [Google Scholar]
  19. McLafferty M. A., Harcus D. R., Hewlett E. L. 1988; Nucleotide sequence and characterization of a repetitive DNA element from the genome of Bordetella pertussis with characteristics of an insertion sequence. J. Gen. Microbiol 134:2297–2306
    [Google Scholar]
  20. Mertsola J. 1985; Mixed outbreak of Bordetella pertussis and Bordetella parapertussis infection in Finland. Eur. J. Clin. Microbiol 4:123–128
    [Google Scholar]
  21. Miller J. J. Jr., Saito T. M., Silverberg R. J. 1941; Par叩ertussis: clinical and serologic observations. J. Pediatr 19:229–240
    [Google Scholar]
  22. Musser J. M., Bemis D. A., Ishikawa H., Selander R. K. 1987; Clonal diversity and host distribution in Bordetella bronchiseptica. J. Bacteriol 169:2793–2803
    [Google Scholar]
  23. Musser J. M., Hewlett E. L., Peppier M. S., Selander R. K. 1986; Genetic diversity and relationships in populations of Bordetella spp. J. Bacteriol 166:230–237
    [Google Scholar]
  24. Porter J. F., Connor K., Donachie W. 1994; Isolation and characterization of Bordetella parapertussis bacteria from ovine lungs. Microbiology 140:255–261
    [Google Scholar]
  25. Preston N. W. 1988 Pertussis today. 1–18 Wardlaw A. C., Parton R.ed Pathogenesis and immunity in pertussis John Wiley and Sons; New York:
    [Google Scholar]
  26. van der Zee A., Agterberg C., Peeters M., Schellekens J., Mooi F. R. 1993; A PCR assay for whooping cough: simultaneous detection and discrimination of Bordetella pertussis and Bordetella parapertussis. J. Clin. Microbiol 31:2134–2140
    [Google Scholar]
  27. van der Zee A., Agterberg C., van Agterveld M., Peeters M., Mooi F. R. 1993; Characterization of IS1001, an insertion sequence element of Bordetella parapertussis. J. Bacteriol 175:141–147
    [Google Scholar]
  28. Van Embden J. D., Cave M. D., Crawford J. T., Dale J. W., Eisenach K. D., Gicquel B., Hermans P., Martin C., McAdam R., Shinnick T. M. et al. 1993; Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology. J. Clin. Microbiol 31:406–409
    [Google Scholar]
  29. Whittam T. S. 1995 Genetic population structure and pathogenicity in enteric bacteria. 217–246 Baumberg S., Young J., Wellington E., Saunders J.ed Population genetics of bacteria Cambridge University Press; Cambridge:
    [Google Scholar]
  30. Wirsing von Konig C. H., Finger H. 1994; Role of pertussis toxin in causing symptoms of Bordetella parapertussis infection. Eur. J. Clin. Microbiol. Infect. Dis 13:455–458
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-46-3-640
Loading
/content/journal/ijsem/10.1099/00207713-46-3-640
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error