1887

Abstract

The phylogenetic position of has been difficult to determine because reconstructions of phylogenetic trees based on rRNA sequences have been ambiguous. The most probable trees determined by most algorithms place the genus at the base of a group that includes the halobacteria and the methanogens and their relatives, although occasionally some algorithms place this genus near the eocytes (the hyperthermophilic, sulfur-metabolizing prokaryotes), suggesting that it may belong to this lineage. In order to resolve the phylogeny of the genus , we determined the sequence of an informative region of elongation factor 1-alpha that contains an 11-amino-acid insertion in eocytes and eukaryotes which is replaced by a 4-amino-acid insertion in methanogens, halobacteria, and eubacteria. On the basis of the results of our elongation factor 1-alpha gene analysis, we concluded that the genus diverged from the eocyte branch before the eukaryotic and eocyte lineages separated and therefore is not an eocyte.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-46-1-348
1996-01-01
2022-08-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/46/1/ijs-46-1-348.html?itemId=/content/journal/ijsem/10.1099/00207713-46-1-348&mimeType=html&fmt=ahah

References

  1. Anderson L. K., Eiserling F. A. 1985; Plasmids of the cyanobacterium Synechocystis 6701. FEMS Microbiol. Lett 29:193–195
    [Google Scholar]
  2. Ann D. K., Moutsatsos L. K., Nakamura T., Lin H. H., Mao P. L., Lee M. J., Chin S., Liem R. K. H., Wang E. 1991; Isolation and characterization of the rat chromosomal gene for a polypeptide (pSl) antigenically related to statin. J. Biol. Chem 266:10429–10437
    [Google Scholar]
  3. Auer J., Spicker G., Bock A. 1990; Nucleotide sequence of the gene for elongation factor EF-1 from the extreme thermophilic archaebacterium Thermococcus celer. Nucleic Acids Res 18:3989
    [Google Scholar]
  4. Auer J., Spicker G., Meyerhofer L., Puhler G., Bock A. 1991; Organization and nucleotide sequence of the gene cluster comprising the elongation factor la from Sulfolobus acidocaldarius. Syst.库pl. Microbiol 14:14–20
    [Google Scholar]
  5. Bachleitner M., Ludwig W., Stetter K. O., Schleifer K. H. 1989; Nucleotide sequence of the gene coding for elongation factor Tu from the extreme thermophilic eubacterium Thermotoga maritima. FEMS Microbiol. Lett 57:115–120
    [Google Scholar]
  6. Baldacci G., Guinet F., Tillit J., Zaccai G., de Recondo A. M. 1990; Functional implications related to the gene structure of the elongation factor EF-Tu from Halobacterium marismortui. Nucleic Acids Res 18:507–511
    [Google Scholar]
  7. Brands J. H., Maassen J. A., van Hemert F. J., Amons R., Moller W. 1986; The primary structure of the subunit of human elongation factor 1: structural aspects of guanine-binding nucleotide-binding sites. Eur. J. Biochem 155:167–171
    [Google Scholar]
  8. Burggraf S., Stetter K. O., Rouviere P., Woese C. R. 1991; Methanopyrus kandleri: an archeal methanogen unrelated to all other known methanogens. Syst. Appl. Microbiol 14:346–351
    [Google Scholar]
  9. Clark B. F. C., Kjeldgard M., Cour T. F. M. la, Thirup S., Nyborg J. 1990; Structural determination of the functional sites of E. coli elongation factor Tu. Biochim. Biophys. Acta 1050:203–208
    [Google Scholar]
  10. Cottrelle P., Thiele D., Price V. L., Memet S., Micoin J. Y., Marek C., Buhler J. M., Sentenac A., Fromageot P. 1985; Cloning, nucleotide sequence, and expression of one of two genes for yeast elongation factor 1 alpha. J. Biol. Chem 260:3090–3096
    [Google Scholar]
  11. Creti R., Citarella F., Toboni O., Sanangelantoni A. M., Palm P., Cammarano P. 1991; Nucleotide sequence of a DNA region comprising the gene for elongation factor 1 from the ultrathermophilic archaeote Pyrococcus woesei, phylogenetic implications. J. Moi. EvoL 33:332–342
    [Google Scholar]
  12. Gogarten J. P., Kibak H., Dittrich P., Taiz L., Bowman B. J., Manolson M. F., Poole R. J., Date T., Oshima T. et al. 1989; Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes. Proc. Natl. Acad. Sci. USA 86:6661–6665
    [Google Scholar]
  13. Hashimoto T., Nakamura Y., Nakamura F., Shirakura T., Adachi J., Goto N., Okamoto K., Hasegawa M. 1994; Protein phylogeny gives a robust estimation for early divergences of eukaryotes: phylogenetic place of a mitochondria-lacking protozoan, Giardia lamblia. Mol. Biol. EvoL 11:65–71
    [Google Scholar]
  14. Herrmann B. G., Frischauf A. 1987; Isolation of genomic DNA. Methods EnzymoL 152:180–183
    [Google Scholar]
  15. Hovemann B., Richter S., Walldorf U., Cziepluch C. 1988; Two genes encode related cytoplasmic elongation factors 1 alpha (EF-1 alpha) in Drosophila melanogaster with continuous and stage specific expression. Nucleic Acids Res 16:3175–3194
    [Google Scholar]
  16. Huber R., Kurr M., Jannasch H. W., Stetter K. O. 1989; A novel group of abyssal methanogenic archaebacteria (Methanopyrus) growing at 110°C. Nature (London) 342:833–834
    [Google Scholar]
  17. Iwabe N., Kuma K., Hasegawa M., Osawa S., Miyata T. 1989; Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc. Natl. Acad. Sci. USA 86:9355–9359
    [Google Scholar]
  18. Jones J. J., Nagle D. P., Whitman W. B. 1987; Methanogens and the diversity of archaebacteria. Microbiol. Rev 51:135–177
    [Google Scholar]
  19. Jukes T. H., Cantor C. R. 1969 Evolution of protein molecules. 21–132 Munro H. N.ed Mammalian protein metabolism Academic Press; New York:
    [Google Scholar]
  20. Jurnak F., Heffron S., Schick B., Delaria K. 1990; Three-dimensional models of the GDP and GTP forms of the guanine nucleotide domain of Escherichia coli elongation factor Tu. Biochim. Biophys. Acta 1050:209–214
    [Google Scholar]
  21. Kimura M. 1983 The natural theory Cambridge University Press; London:
    [Google Scholar]
  22. Kraus M., Gotz M., Loffelhardt W. 1990; The cyanelle str operon from Cyanophora paradoxat sequence analysis and phylogenetic implications. Plant Mol. Biol 15:561–565
    [Google Scholar]
  23. Kurasawa Y., Numata O., Katoh M., Hirano H., Chiba J., Watanabe Y. 1992; Identification of Tetrahymena 14-nm filament-associated protein as elongation factor 1 alpha. Exp. Cell Res 203:251–258
    [Google Scholar]
  24. Lake J. A. 1988; Origin of the eukaryotic nucleus determined by rateinvariant analysis of rRNA sequences. Nature (London) 331:184–186
    [Google Scholar]
  25. Lake J. A. 1994; Reconstructing evolutionary trees from DNA and protein sequences: paralinear distances. Proc. Natl. Acad. Sci. USA 91:1455–1459
    [Google Scholar]
  26. Lechner K., Bock A. 1987; Cloning and nucleotide sequence of the gene for an archaebacterial protein synthesis elongation factor Tu. Mol. Gen. Genet 208:523–528
    [Google Scholar]
  27. Lockhart P. J., Steel M. A., Hendy M. D., Penny D. 1994; Recovering evolutionary trees under a more realistic model of sequence evolution. Mol. Biol. Evol 11:605–612
    [Google Scholar]
  28. Moldave K. 1985; Eukaryotic protein synthesis. Annu. Rev. Biochem 54:1109–1125
    [Google Scholar]
  29. Pokalsky A. R., Hiatt W. R., Ridge N., Rasmussen R. et al. 1989; Structure and expression of elongation factor-l-alpha in tomato. Nucleic Acids Res 17:4661–4673
    [Google Scholar]
  30. Reeve J. N. 1992; Molecular biology of methanogens. Annu. Rev. Microbiol 46:165–191
    [Google Scholar]
  31. Riis B., Rattan S. I. S., Clark B. F. C., Merrick W. C. 1990; Eukaryotic protein elongation factors. Trends Biol. Sci 15:420–423
    [Google Scholar]
  32. Rivera M. C., Lake J. A. 1992; Evidence that eukaryotes and eocyte prokaryotes are immediate relatives. Science 257:74–76
    [Google Scholar]
  33. Runnegar B. 1993 Proterozoic eukaryotes: evidence from biology and geology. 287–297 Bengtson S.ed Early life on earth Cambridge University Press; Cambridge:
    [Google Scholar]
  34. Saiki R. K., Gelfand D. H., Stoffer S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. 1988; Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491
    [Google Scholar]
  35. Slesarev A. I., Stetter K. O., Lake J. A., Gellert M., Krah R., Kozyavkin S. A. 1993; DNA topoisomerase V is a relative of eukaryotic topoisomerase I from a hyperthermophilic prokaryote. Nature (London) 364:735–737
    [Google Scholar]
  36. Stetter K. O. 1988; Archaeoglobus fulgidus gen. nov., sp. nov.: a new taxon of extremely thermophilic archaebacteria. Syst. Appl. Microbiol 10:172–173
    [Google Scholar]
  37. Stetter K. O., Fiala G., Huber G., Huber R., Segerer A. 1990; Hyperthermophilic microorganisms. FEMS Microbiol. Rev 75:117–124
    [Google Scholar]
  38. Stetter K. O., Konig H., Stackebrandt E. 1983; Pyrodictium gen. nov., a new genus of submarine disc-shaped sulfur reducing archaebacteria growing optimally at 105°C. Syst. Appl. Microbiol 4:535–551
    [Google Scholar]
  39. Tesch A., Klink F. 1990; Cloning and sequencing of the gene coding for the elongation factor 1-alpha from the archaebacterium Thermoplasma acidophilum. FEMS Microbiol. Lett 71:293–297
    [Google Scholar]
  40. Walsby A. E., Van Rijn J., Cohen Y. 1983; The biology of new gasvacuolate cyanobacterium, Dactylococcopsis salina sp. nov., in Solar Lake. Proc. R. Soc. Lond. B Biol. Sci 217:417–447
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-46-1-348
Loading
/content/journal/ijsem/10.1099/00207713-46-1-348
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error