1887

Abstract

A bacterial strain that was able to mineralize 2,4,6-trichlorophenol was isolated from a chlorophenol-fed percolator and was identified as a member of the genus on the basis of chemotaxonomic characteristics and 16S RNA phylogenetic inference data. This organism (strain MBS1 [T = type strain]) exhibited a typical irregular rod-coccus cycle, and the cells had fimbria-like structures on their surfaces. The diagnostic cell wall amino acid was -diaminopimelic acid, and the sugars were arabinose and galactose; the mycolic acids contained 46 to 54 carbon atoms. The main menaquinone was MK-8(H), and MK-9(H) was a minor component. The cellular phospholipids were phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositolmannoside, phosphatidylglycerol, and diphosphatidylglycerol. Tuberculostearic acid was present. The whole-cell fatty acids were straight-chain acids with 14 to 18 C atoms. The G + C content of the DNA was 67.4 mol%. This organism grew on sucrose, pyruvate, and 2,4,6-trichlorophenol, and it oxidized a large number of carbon compounds, including catechol, 3-hydroxyphenylacetic acid, and phenol. It also exhibited β-galactosidase, urease, and 2-acetyl-lactate decarboxylase activities. On a phylogenetic tree that was based on 16S ribosomal DNA gene sequences strain MBS1 was found among the rhodococci on an independent branch. On the basis of the chemotaxonomic and phenotypic characteristics of strain MBS1 and its phylogenetic position we suggest that this bacterium should be placed in a new species, the specific epithet was chosen because the organism was isolated by using an enriched percolator. The type strain is strain MBS1.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-46-1-23
1996-01-01
2024-12-05
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/46/1/ijs-46-1-23.html?itemId=/content/journal/ijsem/10.1099/00207713-46-1-23&mimeType=html&fmt=ahah

References

  1. Asturias J. A., Moore E., Yakimov M. H., Klatte S., Timmis K.-N. 1994; Reclassification of the polychlorinated biphenyl-degraders Acinetobacter sp. strain P6 and Corynebacterium sp. strain MB1 as Rhodococcus globerulus. Syst. Appl. Microbiol 17:226–231
    [Google Scholar]
  2. Briglia M. 1986; Impiego di antibiotici per Fisolamento e la conta degli attinomiceti dal suolo. Agricoltura Italiana Fascolo 1/2:17–28
    [Google Scholar]
  3. Briglia M. Unpublished data
  4. Briglia M., Middeldorp P. J. M., Salkinoja-Salonen M. S. 1994; Mineralization performance of Rhodococcus chlorophenolicus strain PCP-1 in contaminated soil simulating on site conditions. Soil Biol. Biochem 26:377–385
    [Google Scholar]
  5. Cashion P., Holder-Franklin M. A., MacCully J. M., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal. Biochem 81:461–466
    [Google Scholar]
  6. De Ley J. H., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur. J. Biochem 12:133–142
    [Google Scholar]
  7. De Soete G. 1983; A least squares algorithm for fitting additive trees to proximity data. Psychometrica 48:621–626
    [Google Scholar]
  8. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive analysis program for the VAX. Nucleic Acids Res 12:387–395
    [Google Scholar]
  9. Farshtchi D., McClung N. M. 1967; Fine structure of Nocardia asteroides grown in a chemically defined medium. J. Bacteriol 94:255–257
    [Google Scholar]
  10. Finnerty W. R. 1992; The biology and genetics of the genus Rhodococcus. Annu. Rev. Microbiol 46:193–218
    [Google Scholar]
  11. Fox G. E., Stackebrandt E., Hespell R. B., Gibson J., Maniloff J., Dyer T. A., Wolfe R. S., Gupta R., Bonen L., Lewis B. J., Stahl D. A., Luehrson K. R., Chen K. N., Woese C. R. 1980; The phylogeny of prokaryotes. Science 209:457–463
    [Google Scholar]
  12. Garland J. L., Mills A. L. 1991; Classification and characterization of heterotrophic microbial communities on the basis of patterns of communitylevel sole-carbon-source utilization. Appl. Environ. Microbiol 57:2351–2359
    [Google Scholar]
  13. Goodfellow M. 1984; Reclassification of Corynebacterium fascians (Tilford) Dowson in the genus Rhodococcus, as Rhodoccus fascians comb. nov. Syst. Appl, Microbiol 5:225–229
    [Google Scholar]
  14. Goodfellow M. 1989 Genus Rhodococcus,. 2362–2371 Williams S. T., Sharpe M. E., Holt J. G.ed Bergey’s manual of systematic bacteriology 4 The Williams & Wilkins Co.; London:
    [Google Scholar]
  15. Goodfellow M. 1991 The fami\y Nocardiaceae,. 1188–1213 Balows A., Truper H. G., Dworkin M., Harder W., Schleifer K. H.ed The prokaryotes, 2nd. Springer-Verlag; New York:
    [Google Scholar]
  16. Goodfellow M., Alderson G. 1977; The actinomycete-genus Rhodococcus: a home for the “rhodochrous” complex. J. Gen. Microbiol 100:99–122
    [Google Scholar]
  17. Haggblom M. M., Janke D., Salkinoja-Salonen M. S. 1989; Transformation of chlorinated phenolic compounds in the genus Rhodococcus. Microb. Ecol 18:305–314
    [Google Scholar]
  18. Haggblom M. M., Salkinoja-Salonen M. S. 1991; Biodegradability of chlorinated organic compounds in pulp bleaching effluents. Water Sci. Technol 24:161–170
    [Google Scholar]
  19. Helmeke E., Weyland H. 1984; Rhodococcus marinonascens sp. nov., an actinomycete from the sea. Int. J. Syst. Bacteriol 34:127–138
    [Google Scholar]
  20. Holt J. G., Krieg N. R., Sneath P. H. A., Staley J. T., Williams S. T. 1994 Bergey’s manual of determinative bacteriology. , 9th.625–650 Williams & Wilkins Co.; London:
    [Google Scholar]
  21. Huss V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst. Appl. Microbiol 4:184–192
    [Google Scholar]
  22. Jahnke K.-D. 1992; BASIC computer program for evaluation of spectroscopic DNA renaturation data from GILFORD SYSTEM 2600 spectrophotometer on a PC/XT/AT type personal computer. J. Microbiol. Methods 15:61–73
    [Google Scholar]
  23. Jahnke D., Ihn W., Tresselt D. 1989; Critical steps in degradation of chloroaromatics by rhodococci. IV. Detailed kinetics of substrate removal and product formation by resting pre-adapted cells. J. Basic Microbiol 29:305–314
    [Google Scholar]
  24. Jukes T. H., Cantor C. R. 1969 Evolution of protein molecules. 21–132 Munro H. N.ed Mammalian protein metabolism Academic Press; New York:
    [Google Scholar]
  25. Klatte S., Jahnke K.-D., Kroppenstedt R. M., Rainey F., Stackebrandt E. 1994; Rhodococcus luteus is a later subjective synonym of Rhodococcus fascians. Int. J. Syst. Bacteriol 44:627–630
    [Google Scholar]
  26. Klatte S., Kroppenstedt R. M., Rainey F. A. 1994; Rhodococcus opacus sp. nov., an unusual nutritionally versatile Rhodococcus species. Syst. Appl. Microbiol 17:355–360
    [Google Scholar]
  27. Kroppenstedt R. M., Stackebrandt E., Goodfellow M. 1990; Taxonomic revision of the actinomycete genera Actinomadura and Microtetraspora. Syst. Appl. Microbiol 13:148–160
    [Google Scholar]
  28. Krulwich T. A., Pate J. L. 1971; Ultrastructural expression for snapping postfission movements in Arthrobacter crystallopoietes. J. Bacteriol 105:408–412
    [Google Scholar]
  29. Larsen N., Olsen G. J., Maidak B. L., McCaughey M. J., Overbeek R., Macke T. J., Marsh T. L., Woese C. R. 1993; The Ribosomal Database Project. Nucleic Acids Res 21:3021–3023
    [Google Scholar]
  30. MacFaddin J. F. 1985 Media for isolation-cultivation-identification maintenance of medical bacteria. 1260 Williams and Wilkins; Baltimore:
    [Google Scholar]
  31. Mesbach M., Premachandran U., Whitman W. 1989; Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol 39:159–167
    [Google Scholar]
  32. Miller L., Berger T. 1985 Bacterial identification by gas chromatography of whole cell fatty acids. Gas Chromatography Application Note 228–41. Hewlett Packard Co.; Palo Alto, Calif:
    [Google Scholar]
  33. Minnikin D. E., O’onnel A. G., Goodfellow M., Alderson M., Athalye G., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of isoprenoid quinones and polar lipids. J. Microbiol. Methods 2:233–241
    [Google Scholar]
  34. Peczynska-Czoch W., Mordarski M. 1983 Transformation of xenobiotics. 287–336 Goodfellow M., Mordarski M., Williams S. T.ed The biology of actinomycetes Academic Press; London:
    [Google Scholar]
  35. Poon H. N., bay A. W. 1974; “Fimbriae” in the fungus Ustilago violacea. Nature (London) 250:648–649
    [Google Scholar]
  36. Poon H. N., Day A. W. 1974; Fungal fimbriae. I. Structure, origin, and synthesis. Can. J. Microbiol 21:537–546
    [Google Scholar]
  37. Rainey F. A., Dorsch M., Morgan H. W., Stackebrandt E. 1992; 16S rRNA analysis of Spirochaeta thermophila: its phylogenetic position and implication for the systematics of the order Spirochetales. Syst. Appl. Microbiol. 15:197–202
    [Google Scholar]
  38. Stanek J. L., Roberts G. D. 1974; Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl. Microbiol 28:226–231
    [Google Scholar]
  39. Stoecker M. A., Russell H. P., Staley J. T. 1994; Rhodococcus zopfii sp. nov., a toxicant-degrading bacterium. Int. J. Syst. Bacteriol 44:106–110
    [Google Scholar]
  40. Sundman V. 1964; The ability of ct-conidendrin decomposing Agrobacterium strains to utilize other lignin-related compounds. J. Gen. Microbiol 36:185–201
    [Google Scholar]
  41. Tamaoka J., Komogata K. 1984; Determination of DNA base composition by reversed phase high-performance liquid chromatography. FEMS Microbiol. Lett 25:125–128
    [Google Scholar]
  42. Tsukamura M., Yano L., Takiiji K., Miyama A. 1991; Rhodococcus roseus sp. nov., nom. rev. Int. J. Syst. Bacteriol 41:385–389
    [Google Scholar]
  43. Turner W. B. 1973 Secondary metabolism with special reference to actino-mycetales. 209–218 Sykes G., Skinner F. A.ed Actinomycetales: characteristics and practical importance Academic Press; London:
    [Google Scholar]
  44. Van Loosdrecht M. C. M., Lyklema J., Norde W., Zehnder A. J. B. 1987; The role of a bacterial cell wall hydrophobicity in adhesion. Appl. Environ. Microbiol 53:1893–1897
    [Google Scholar]
  45. Winter B., Zimmermann W. 1992 Degradation of halogenated aromatics by actinomycetes. 157–203 Sigel H., Sigel A.ed Metal ions in biological systems 28 Marcel Dekker; New York:
    [Google Scholar]
  46. Yanagawa R., Otsuki K., Tokui T. 1968; Electron microscopy of fine structure of Corynebacterium renale with special reference to pili. Jpn. J. Vet. Res 16:31–38
    [Google Scholar]
  47. Zaitsev G. M., Uotila J. S., Tsitko I. V., Lobanok A. G., Salkinoja-Salonen M. S. 1995; Utilization of halogenated benzenes, phenols, and benzoates by Rhodococcus opacus GM-14. Appl. Environ. Microbiol 61:4191–4201
    [Google Scholar]
  48. Zuckerkandl E., Pauling L. 1965; Molecules as documents of evolutionary history. J. Theor. Biol 8:357–366
    [Google Scholar]
/content/journal/ijsem/10.1099/00207713-46-1-23
Loading
/content/journal/ijsem/10.1099/00207713-46-1-23
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error