1887

Abstract

An obligately anaerobic, extremely thermophilic species was isolated from a freshwater pool formed from a geothermally heated (56 to 69°C) water outlet in Government Gardens, Rotorua, New Zealand. This organism was a spore-forming, gram-negative, rod-shaped bacterium. Strain Rt8.B1 (= DSM 10319) (T = type strain) fermented a wide variety of mono-, di-, and polysaccharides and produced ethanol, acetate, lactate, propionate, and hydrogen. Sugar alcohols were also fermented, but organic acids and amino acids were not utilized. On the basis of its morphological characteristics, DNA G+C content, obligately anaerobic, thermophilic, polysaccharolytic nature, and levels of 16S rRNA sequence homology, we propose that strain Rt8.B1 should be classified in the genus as a new species,

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-46-1-123
1996-01-01
2022-07-03
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/46/1/ijs-46-1-123.html?itemId=/content/journal/ijsem/10.1099/00207713-46-1-123&mimeType=html&fmt=ahah

References

  1. Ben-Bassat A., Lamed R., Zeikus J. G. 1981; Ethanol production by thermophilic bacteria: metabolic control of end product formation in Thermoanaerobium brockii. J. Bacteriol 146:192–199
    [Google Scholar]
  2. Carreira L. H., Ljungdahl L. G., Bryant F., Szulczynski M., WiegeL J. 1982 Control of product formation with Thermoanaerobacter ethanolicus, enzymology and physiology. 351–355 Ikeda Y.ed Genetics of industrial microorganisms American Society for Microbiology; Washington, D.C:
    [Google Scholar]
  3. Carreira L. H., Wiegel J., Ljungdahl L. G. 1983; Production of ethanol from biopolymers by anaerobic, thermophilic, and extreme thermophilic bacteria. I. Regulation of carbohydrate utilization in mutants of Thermoanaerobacter ethanolicus. BiotechnoL Bioeng. Symp 13:183–191
    [Google Scholar]
  4. Collins M. D., Lawson P. A., Willems A., Cordoba J. J., Femandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J. A. E. 1994; The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int. J. Syst. Bacteriol 44:812–826
    [Google Scholar]
  5. Cook G. M.j, Janssen P. H., Morgan H. W. 1991; Endospore formation by Thermoanaerobium brockii HTD4. Syst. AppL Microbiol 14:240–244
    [Google Scholar]
  6. Cook G. M., Janssen P. H., Morgan H. W. 1993; Simultaneous uptake and utilisation of glucose and xylose by Clostridium thermohydrosulfuricum. FEMS Microbiol. Lett 109:55–62
    [Google Scholar]
  7. Cook G. M., Janssen P. H., Morgan H. W. 1993; Uncoupler-resistant glucose uptake by the thermophilic glycolytic anaerobe Thermoanaerobacter thermosulfuricus (Clostridium thermohydrosulfuricum). Appl. Environ. Microbiol 59:2984–2990
    [Google Scholar]
  8. Cook G. M., Janssen P. H., Russell J. B., Morgan H. W. 1994; Dual mechanisms of xylose uptake in the thermophilic bacterium Thermoanaerobacter thermohydrosulfuricus. FEMS Microbiol. Lett 116:257–262
    [Google Scholar]
  9. Cook G. M., Morgan H. W. 1994; Hyperbolic growth of Thermoanaerobacter thermohydrosulfuricus (Clostridium thermohydrosulfuricum) increases ethanol production in pH-controlled batch culture. Appl. Microbiol. BiotechnoL 41:84–89
    [Google Scholar]
  10. De Soete G. 1983; A least squares algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626
    [Google Scholar]
  11. Germain P., Toukourou F., Donaduzzu L. 1986; Ethanol production by anaerobic thermophilic bacteria: regulation of lactate dehydrogenase activity in Clostridium thermohydrosulfuricum. Appl. Microbiol. BiotechnoL 24:300–305
    [Google Scholar]
  12. Hollaus F., Sleytr U. 1972; On the taxonomy and fine structure of some hyperthermophilic saccharolytic clostridia. Arch. Mikrobiol 86:129–146
    [Google Scholar]
  13. Jain M. K., Zeikus J. G. 1992 The genera Thermoanaerobacter, Thermoanaerobium, and other thermoanaerobic saccharolytic bacteria of uncertain taxonomic affiliation. 1901–1913 Balows A., Truper H. G., Dworkin M., Harder W., Schleifer K. H.ed The prokaryotes, 2nd. Springer-Verlag; New York:
    [Google Scholar]
  14. Jin F., Yamasato K., Toda K. 1988; Clostridium thermocopriae sp. nov., a cellulolytic thermophile from animal feces, compost, soil, and a hot spring in Japan. Int. J. Syst. Bacteriol 38:279–281
    [Google Scholar]
  15. Jukes T. FL, Cantor C. R. 1969 Evolution of protein molecules. 21–132 Munro H. N.ed Mammalian protein metabolism Academic Press, Inc.; New York:
    [Google Scholar]
  16. Lamed R., Zeikus J. G. 1980; Glucose fermentation pathway of Thermoanaerobium brockii. J. Bacteriol 141:1251–1257
    [Google Scholar]
  17. Lamed R., Zeikus J. G. 1980; Ethanol production by thermophilic bacteria: relationship between fermentation product yields of and catabolic enzyme activities in Clostridium thermocellum and Thermoanaerobium brockii. J. Bacteriol 144:569–578
    [Google Scholar]
  18. Lee Y.-E., Jain M. K., Lee C., Lowe S. E., Zeikus J. G. 1993; Taxonomic distinction of saccharolytic thermophilic anaerobes: description of Thermoanaerobacterium xylanofyticum gen. nov., sp. nov., and Themoanaerobactenum saccharofyticum gen. nov., sp. nov.; reclassification of Thermoanaerobium brockii, Clostridium thermosulfurogenes, and Clostridium thermohydrosulfuricum E100–69 as Thermoanaerobacter brockii comb, nov., Thermoanaerobacteiium thermosulfurigenes comb, nov., and Thermoanaerobacter thermohydrosulfuricus comb. nov., respectively; and transfer of Clostridium themohydrosulfuricum 39E to Thermoanaerobacter ethanolicus. Int. J. Syst. Bacteriol 43:41–51
    [Google Scholar]
  19. Leigh J. A., Mayer F., Wolfe R. S. 1981; Acetogenium kivui gen. nov., sp. nov., a new thermophilic hydrogen oxidizing, acetogenic bacterium. Arch. Microbiol 129:275–280
    [Google Scholar]
  20. Leigh J. A., Wolfe R. S. 1983; Acetogenium kivui, a thermophilic acetogenic bacterium. Int. J. Syst. Bacteriol 33:886
    [Google Scholar]
  21. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol 39:159–167
    [Google Scholar]
  22. Patel B. K. C., Morgan H. W., Daniel R. M. 1985; A simple and efficient method for preparing and dispensing anaerobic media. BiotechnoL Lett 7:277–278
    [Google Scholar]
  23. Patel B. K. C., Morgan H. W., Daniel R. M. 1985; Fervidobacterium nodosum gen. nov. and sp. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium. Arch. Microbiol 141:63–69
    [Google Scholar]
  24. Patel B. K. C., Mooan H. W., Daniel R. M. 1986; Studies on some thermophilic glycolytic anaerobic bacteria from New Zealand hot springs. Syst. Appl. Microbiol 8:128–136
    [Google Scholar]
  25. Peteranderl R., Shotts E. B. Jr., Wiegel J. 1990; Stability of antibiotics under growth conditions for thermophilic anaerobes. Appl. Environ. Microbiol 56:1981–1983
    [Google Scholar]
  26. Pirt S. J. 1975 Principles of microbe and cell cultivation Blackwell; Oxford:
    [Google Scholar]
  27. Rainey F. A., Dorsch M., Morgan H. W., Stackebrandt E. 1992; 16S rDNA analysis of Spirochaeta thermophila’. its phylogenetic position and implications for the systematics of the order Spirochaetales. Syst. Appl. Microbiol 15:197–202
    [Google Scholar]
  28. Rainey F. A., Stackebrandt E. 1993; Transfer of the type species of the genus Thermobacteroides to the genus Thermoanaerobacter as Thermoanaerobacter acetoethylicus (Ben-Bassat and Zeikus 1981) comb, nov., description of Coprothermobacter gen. nov., and reclassification of Thermobacteroides proteofyticus as Coprothermobacter proteolyticus (Ollivier et al. 1985) comb, nov. Int. J. Syst. Bacteriol 43:857–859
    [Google Scholar]
  29. Rainey F. A., Ward N. L., Morgan H. W., Toalster R., Stackebrandt E. 1993; Phylogenetic analysis of anaerobic thermophilic bacteria: aid for their reclassification. J. Bacteriol 175:4772–4779
    [Google Scholar]
  30. Schmid U., Giesel H., Schoberth S. M., Sahm H. 1986; Thermoanaerobacter finnii spec, nov., a new ethanologenic sporogenous bacterium. Syst. Appl. Microbiol 8:80–85
    [Google Scholar]
  31. Sleytr U. B., Glauert A. M. 1976; Ultrastructure of the cell walls of two closely related clostridia that possess different regular arrays of surface subunits. J. Bacteriol 126:869–882
    [Google Scholar]
  32. Smibert R. M., Krieg N. R. 1981 General characterization. 409–425 Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Kreig N. R., Phillips G. B.ed Manual of methods for general bacteriology American Society for Microbiology; Washington, D.C:
    [Google Scholar]
  33. Wiegel J. 1980; Formation of ethanol by bacteria. A pledge for the use of extreme thermophilic anaerobic bacteria in industrial ethanol fermentation processes. Experientia 36:1434–1446
    [Google Scholar]
  34. Wiegel J. 1992 The obligately anaerobic thermophilic bacteria. 105–184 Kristjansson J. K.ed Thermophilic bacteria CRC Press; London:
    [Google Scholar]
  35. Wiegel J., Ljungdahl L. G. 1981; Thermoanaerobacter ethanolicus gen. nov., sp. nov., a new extreme thermophilic, anaerobic bacterium. Arch. Microbiol 128:343–348
    [Google Scholar]
  36. Wiegel J., Ljungdahl L. G., Rawson J. R. 1981; Isolation from soil and properties of the extreme thermophile Clostridium thermohydrosulfuricum. J. Bacteriol 139:800–810
    [Google Scholar]
  37. Wiegel J. K. W. 1986 Genus Thermoanaerobacter,. 1379–1383 Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G.ed Bergey’s manual of systematic bacteriology 2 The Williams and Wilkins Co.; Baltimore:
    [Google Scholar]
  38. Winter J., Zellner G. 1990; Thermophilic anaerobic degradation of carbohydrates–metabolic properties of microorganisms from the different phases. FEMS Microbiol. Rev 75:139–154
    [Google Scholar]
  39. Zeikus J. G., Ben-Bassat A., Hegge P. W. 1980; Microbiology of methanogenesis in thermal, volcanic environments. J. Bacteriol 143:432–440
    [Google Scholar]
  40. Zeikus J. G. P. W, Anderson M. A. 1979; Thermoanaerobium brockii gen. nov. and sp. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium. Arch. Microbiol 122:41–48
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-46-1-123
Loading
/content/journal/ijsem/10.1099/00207713-46-1-123
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error