1887

Abstract

In the last few years many attempts have been made to differentiate more than 20 species. It has been recognized that identification of bifidobacterial species is problematic because of phenetic and genetic heterogeneities. In order to contribute to our understanding of taxonomy, we studied phylogeny by performing both 16S rRNA and 16S to 23S (16S-23S) internally transcribed spacer (ITS) sequence analyses. In this study, we determined 16S rRNA sequences of five strains representing four species, and compared them with the sequences available in the GenBank database, and used them to construct a distance tree and for a bootstrap analysis. Moreover, we determined the ITS sequences of 29 bifidobacterial strains representing 18 species and compared these sequences with each other. We constructed a phylogenetic tree based on these sequence data and compared this tree with the tree based on 16S rRNA sequence data. We found that the two trees were similar topologically, suggesting that the two types of molecules provided the same kind of phylogenetic information. However, while 16S rRNA sequences are a good tool to infer interspecific links, the 16S-23S rDNA spacer data allowed us to determine intraspecific relationships. Each of the strains was characterized by its own ITS sequence; hence, 16S-23S rRNA sequences are a good tool for strain identification. Moreover, a comparison of the ITS sequences allowed us to estimate that the maximum level of ITS divergence between strains belonging to the same species was 13%. Our data allowed us to confirm the validity of most of the species which we studied and to identify some classification errors. Finally, our results showed that strains have no tRNA genes in the 16S-23S spacer region.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-46-1-102
1996-01-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/46/1/ijs-46-1-102.html?itemId=/content/journal/ijsem/10.1099/00207713-46-1-102&mimeType=html&fmt=ahah

References

  1. Barry T., Colleran G., Glennon M., Dunican L., Gannon F. 1991; The 16S/23S ribosomal spacer as a target for DNA probes to identify eubacteria. PCR Methods AppL 1:51–56
    [Google Scholar]
  2. Biavati B., Scardovi V., Moore W. E. 1982; Electrophoretic patterns of proteins in the genus Bifidobacterium and proposal of four new species. Int. J. Syst. Bacteriol 32:358–373
    [Google Scholar]
  3. Biavati B., Sgorbati B., Scardovi V. 1991 The genus Bifidobacterium,. 817–833 Balows A., Triiper H. G., Dworkin M., Harder W., Schleifer K. H.ed The prokaryotes, 2nd. Springer Verlag; New York:
    [Google Scholar]
  4. Bourget N., Simonet J.-M., Decaris B. 1993; Analysis of the genome of the five Bifidobacterium breve strains: plasmid content, pulsed-field gel electrophoresis genome size estimation and rm loci number. FEMS Microbiol. Lett 110:11–20
    [Google Scholar]
  5. Brosius J., Dull T. J., Sleeter D. D., Noller H. F. 1981; Gene organization and primary structure of a ribosomal RNA operon from Escherichia coll. J. Mol. Biol 148:107–127
    [Google Scholar]
  6. Chevalier P., Roy D., Ward P. 1990; Detection of Bifidobacterium species by enzymatic methods. J. Appl. Bacteriol 68:619–624
    [Google Scholar]
  7. Chomszynski P. N., Sacchi N. 1987; Single-step methods of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem 162:157–159
    [Google Scholar]
  8. De Vries W., Gerbrandy S. J., Stouthamer A. H. 1967; Carbohydrate metabolism in Bifidobacterium bifidum. Biochem. Biophys. Acta 136:415T25
    [Google Scholar]
  9. Embley T. M., Stackbrandt E. 1994; The molecular phylogeny and systematics of the actinomycetes. Annu. Rev. Microbiol 48:257–289
    [Google Scholar]
  10. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791
    [Google Scholar]
  11. Fox G. E., Wisotzkey J. D., Jurtshuk P. 1992; How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int. J. Sy st. Bacteriol 42:166–170
    [Google Scholar]
  12. Frothingham R., Duncan A. J., Wilson K. H. 1993; Ribosomal DNA sequences of bifidobacteria: implications for sequence-based identification of the human colonic flora. Microb. Ecol. Health Dis 6:23–27
    [Google Scholar]
  13. Genetics Computer Group 1994 Program Manual for the Wisconsin Package, version 5, Sept. 1994. Genetics Computer Group; Madison Wis:
    [Google Scholar]
  14. Goodfellow M., O’onnell A. G. 1993 Roots of bacterial systematics. 3–54 Goodfellow M., O’Donnell A. G.ed Handbook of new bacterial systematics Academic Press; London:
    [Google Scholar]
  15. Greenwood J. R., Picket M. J. 1980; Transfer of Haemophilus vaginalis Gardner and Dukes to a new genus, Gardnerella: G. vaginalis (Gardner and Dukes) comb. nov. Int. J. Syst. Bacteriol 30:170–178
    [Google Scholar]
  16. Greenwood J. R., Picket M. J. 1986 The genus Gardnerella,. 1283–1286 Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G.ed Bergey’s manual of systematic bacteriology 2 Williams and Wilkins; Baltimore:
    [Google Scholar]
  17. Higgins D. G., Sharp P. M. 1988; Clustal: a package for performing multiple sequence alignment on a computer. Gene 73:237–244
    [Google Scholar]
  18. Kagermeier-Callaway A. S., Lauer E. 1995; Lactobacillus sake Katagiri, Kitahara, and Fukami 1934 is the senior synonym for Lactobacillus bavaricus Stetter and Stetter 1980. Int. J. Syst. Bacteriol 45:398–399
    [Google Scholar]
  19. Kempsell K. E., Ji Y. E., Estrada-G I. C. E., Colston M. J., Cox R. A. 1992; The nucleotide sequence of the promoter, 16S rRNA and spacer region of the ribosomal RNA operon of Mycobacterium tuberculosis and comparison with Mycobacterium leprae precursor rRNA. J. Gen. Microbiol 138:1717–1727
    [Google Scholar]
  20. Lane D. J., Pace B., Olsen G. J., Stahl D. A., Sogin M. L., Pace N. R. 1985; Rapid determination of 16S ribosomal RNA sequences for phylogenetic analysis. Proc. NatL Acad. Sci. USA 82:6955–6959
    [Google Scholar]
  21. Larsen N., Olsen G. J., Maidak B. L., McCaughey M. J., Overbeek R., Macke T. J., Marsh T. L., Woese C. R. 1993; The Ribosomal Database Project. Nucleic Acid Res 21:3021–3023
    [Google Scholar]
  22. Lauer E., Kandler O. 1983; DNA-DNA homology, murein types and enzyme patterns in the type strains of the genus Bifidobacterium. Syst. Appl. Microbiol 4:42–64
    [Google Scholar]
  23. Loughney K., Lund E., Dahlberg J. E. 1982; tRNA genes are found between the 16S and 23S rRNA genes in Bacillus subtilis. Nucleic Acids Res 10:1607–1624
    [Google Scholar]
  24. Mangin I. 1994; Typage moleculaire de souches du genre Bifidobacterium: polymorphisme genetique intraspecifique et intragenerique. Ph.D. thesis Universite Henri-Poincare; Nancy 1, Vandoeuvre-les-Nancy, France:
    [Google Scholar]
  25. Mangin I., Bourget N., Bouhnik Y., Bisetti N., Simonet J.-M., Decaris B. 1994; Identification of Bifidobacterium strains by rRNA gene restriction patterns. Appl. Environ. Microbiol 60:1451–1458
    [Google Scholar]
  26. Mangin L, Bourget N., Simonet J.-M., Decaris B. 1995; Selection of species-specific DNA probes which detect strain restriction polymorphism in four Bifidobacterium species. Res. Microbiol 146:59–71
    [Google Scholar]
  27. Marmur J. 1961; A procedure for isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol 3:208–218
    [Google Scholar]
  28. Matteuzzi D., Crociani F., Zani G., Trovatelli L. D. 1971; Bifidobacterium suis n. sp.: a new species of the genus Bifidobacterium isolated from pig feces. Z. Allg. Mikrobiol 11:387–395
    [Google Scholar]
  29. Mitsuoka T. 1984; Taxonomy and ecology of bifidobacteria. Bifidobacteria Microflora 3:11–28
    [Google Scholar]
  30. Mullis K. B., Faloona F. A. 1987; Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol 155:335–350
    [Google Scholar]
  31. Mutai M., Tanaka R. 1987; Ecology of Bifidobacterium in the human intestinal flora. Bifidobacteria Microflora 6:33–41
    [Google Scholar]
  32. Nakagawa T., Shimada M., Mukai H., Asada K., Kato I., Fujino K., Sato T. 1994; Detection of alcohol-tolerant Hiochi bacteria by PCR. Appl. Environ. Microbiol 60:637–640
    [Google Scholar]
  33. Navarro E., Simonet P., Normand P., Bardin R. 1992; Characterization of natural populations of Nitrobacter spp. using PCR/RFLP analysis of the ribosomal intergenic spacer. Arch. Microbiol 157:107–115
    [Google Scholar]
  34. Normand P., Cournoyer B., Simonet P., Nazareth S. 1992; Analysis of a ribosomal RNA operon in the actinomycete Frankia. Gene 111:119–124
    [Google Scholar]
  35. Olsen G. J., Woese C. R., Overbeek R. 1994; The winds of (evolutionary) change: breathing new life into microbiology. J. Bacteriol 176:1–6
    [Google Scholar]
  36. Pernodet J. L., Boccard F., Alegre M. T., Gagnat J., Guerineau M. 1989; Organization and nucleotide sequence analysis of a ribosomal RNA gene cluster from Streptomyces ambofaciens. Gene 79:33–46
    [Google Scholar]
  37. Philippe H. 1993; MUST: a computer package of Management Utilities for Sequences and Trees. Nucleic Acids Res 21:5264–5272
    [Google Scholar]
  38. Philippe H., Adoutte A. 1996 What can phylogenetic patterns tell us about the evolutionary process generating biodiversity?. 41–59 Hochberg M., Clobert J., Barbault R.ed Aspects of the genesis and maintenance of biological diversity Oxford University Press; Oxford:
    [Google Scholar]
  39. Philippe H., Sorhannus U., Baroin A., Perasso R., Gasse F., Adoutte A. 1994; Comparison of molecular and paleontological data in diatoms suggests a major gap in the fossil record. J. Evol. Biol 7:247–265
    [Google Scholar]
  40. Piot P., Van Dyck E., Goodfellow M., Falkow S. 1980; A taxonomic study of Gardnerella vaginalis (Haemophilus vaginalis) Gardner and Dukes 1955. J. Gen. Microbiol 119:373–396
    [Google Scholar]
  41. Plohl M., Gamulin V. 1991; Sequence of the 5S rRNA gene and organization of ribosomal RNA operons in Streptomyces rimosus. FEMS Microbiol. Lett 77:139–144
    [Google Scholar]
  42. Qu L. H., Michot B., Bachellerie J. P. 1983; Improved methods for structure probing in large RNAs: a rapid “heterologous” sequencing approach is coupled to the direct mapping of nuclease accessible sites. Application to the 5’ terminal domain of eukaryotic 28S rRNA. Nucleic Acids Res 11:5903–5919
    [Google Scholar]
  43. Regnery R. L., Spruill C. L., Plikaytis B. D. 1991; Genotypic identification of rickettsiae and estimation of intraspecies sequence divergence for portions of two rickettsial genes. J. Bacteriol 173:1576–1589
    [Google Scholar]
  44. Reuter G. 1963; Vergleichenden Untersuchung iiber die Bifidus-Flora ini Sauglings und Erwachsenenstuhl. Zentralbl. Bakterioi. Parasitenkd. Infektionskr. Hyg. Abt. 1 Orig 191:486–507
    [Google Scholar]
  45. Reuter G. 1971; Designation of type strains for Bifidobacterium species. Int. J. Syst. Bacteriol 21:273–275
    [Google Scholar]
  46. Rogall T., Wolters J., Flohr T., Bottger E. 1990; Towards a phylogeny and the definition of species at the molecular level within the genus Mycobacterium. Int. J. Syst. Bacteriol 40:323–330
    [Google Scholar]
  47. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol 4:406–425
    [Google Scholar]
  48. Scardovi V., Casalicchio F., Vincenzi N. 1979; Multiple electrophoretic forms of transaldolase and 6-phosphogluconate dehydrogenase and their relationships to the taxonomy and ecology of bifidobacteria. Int. J. Syst. Bacteriol 29:312–327
    [Google Scholar]
  49. Scardovi V., Crociani F. 1974; Bifidobacterium catenulatum, B. dentium, and B. angulatum. Three new species and their deoxyribonucleic acid homology relationships. Int. J. Syst. Bacteriol 24:6–20
    [Google Scholar]
  50. Scardovi V., Sgorbati B. 1974; Electrophoretic types of transaldolase, transketolase and other enzymes in bifidobacteria. Antonie van Leeuwenhoek J. Microbiol. Serol 40:427–440
    [Google Scholar]
  51. Scardovi V., Trovatelli L. D. 1965; The fructose-6-phosphatc shunt as a peculiar pattern of hexose degradation in the genus Bifidobacterium. Ann. Microbiol. Enzimol 15:19–29
    [Google Scholar]
  52. Scardovi V., Trovatelli L. D. 1969; New species of bifid bacteria from Apis mellifica L. and Apis indica F. A. contribution to the taxonomy and biochemistry of the genus Bifidobacterium. Zentralbl. Bakterioi. Parasitenkd. Infektionskr. Hyg. Abt. 1 Orig 123:64–88
    [Google Scholar]
  53. Scardovi V., Trovatelli L. D. 1974; Bifidobacterium animalis (Mitsuoka) comb. nov. and the “minimum” and subtile groups of new bifidobacteria found in sewage. Int. J. Syst. Bacteriol 24:21–28
    [Google Scholar]
  54. Scardovi V., Trovatelli L. D., Biavati B., Zani G. 1979; Bifidobacterium cumculi, Bifidobacterium choerinum, Bifidobactemim boum, and Bifidobacterium pseudocatenulatum: four new species and their deoxyribonucleic acid homolog relationships. Int. J, Syst. Bacteriol 29:291–311
    [Google Scholar]
  55. Scardovi V., Trovatelli L. D., Zani G., Crociani F., Matteuzzi D. 1971; Deoxyribonucleic acid homology relationships among species of the genus Bifidobacterium. Int. J. Syst. Bacteriol 21:276–294
    [Google Scholar]
  56. Scardovi V., Zani G. 1974; Bifidobacterium magnum sp. nov.: a large acidophilic Bifidobacterium isolated from rabbit feces. Int. J. Syst. Bacteriol 24:29–34
    [Google Scholar]
  57. Scardovi V., Zani G., Trovatelli L. D. 1970; Deoxyribonucleic acid homology among the species of the genus Bifidobacterium isolated from animals. Arch. Mikrobiol 72:318–325
    [Google Scholar]
  58. Sgorbati B., London J. 1982; Demonstration of phylogenetic relatedness among members of the genus Bifidobacterium by means of the enzyme transaldolase as an evolutionary marker. Int. J. Syst. Bacteriol 32:37–42
    [Google Scholar]
  59. Sgorbati B., Scardovi V. 1979; Immunological relationships among transaldolases in the genus Bifidobacterium. Antonie van Leeuwenhoek J. Microbiol. Serol 45:129–140
    [Google Scholar]
  60. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol 44:846–849
    [Google Scholar]
  61. Suzuki Y., Ono Y., Nagata A., Yamada T. 1988; Molecular cloning and characterization of an rRNA operon in Streptomyces lividans TK21. J. Bacterio) 170:1631–1636
    [Google Scholar]
  62. Suzuki Y., Yamada T. 1988; The nucleotide sequence of 16S rRNA gene from Streptomyces lividans TK 21. Nucleic Acids Res 16:370
    [Google Scholar]
  63. Wawrousek E. F., Narasimhan N., Hansen J. N. 1984; Two large clusters with thirty seven transfer RNA genes adjacent to ribosomal RNA gene sets in Bacillus subtilis. J. Biol. Chem 259:3694–3702
    [Google Scholar]
  64. Woese C. R. 1987; Bacterial evolution. Microbiol. Rev 51:221–271
    [Google Scholar]
  65. Yaeshima T., Fujisawa T., Mitsuoka T. 1992; Bifidobacterium globosum, subjective synonym of Bifidobacterium pseudoIongum, and description of Bifidobacterium pseudolongum subsp. pseudoIongum comb. nov. and Bifidobacterium pseudolongum subsp. globosum. Syst. Appl. Microbiol 15:380–385
    [Google Scholar]
  66. Yamamoto T., Morotomi M., Tanaka R. 1992; 卽ccies-specific oligonucleotide probes for five Bifidobacterium species detected in human intestinal microflora. Appl. Environ. Microbiol 58:4076–4079
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-46-1-102
Loading
/content/journal/ijsem/10.1099/00207713-46-1-102
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error