1887

Abstract

A strictly anaerobic, thermophilic, gram-positive, spore-forming eubacterium designated strain SEBR 5268 (T = type strain) was isolated from an oil field at a depth of 2,100 m, where the temperature was 92°C. The cells of this organism were gram-positive, straight, motile rods (0.5 by 2 to 3 μm) with peritrichous flagella. The cells occurred singly or in pairs during the logarithmic growth phase, but were pleomorphic and filamentous (length, 15 μm) in old cultures. Growth occurred at temperatures of 40 to 75°C, and optimum growth occurred at temperatures between 55 and 60°C. The fermentable substrates included glucose, fructose, galac-tose, mannose, cellobiose, maltose, sucrose, lactose, -xylose, -ribose, mannitol, pyruvate, and starch. The products of fermentation of glucose were lactate, acetate, ethanol, H, and CO. The DNA base composition was 35 mol% G+C. The results of 16S rRNA sequence comparisons indicated that strain SEBR 5268 was closely related to and and these three organisms exhibited levels of ribosomal DNA sequence homology of 98 to 99%. The results of DNA-DNA hybridization studies performed with the three organisms confirmed this close affiliation, and as base pairing values of >70% were obtained, these organisms belong to the same species. Therefore, we propose that should be reclassified as a subspecies of subsp. comb. nov. This automatically creates subsp. We also propose that strain SEBR 5268 should be classified as a member of a new subspecies of subsp. The latter differs from subsp. and subsp. by its 16S rRNA sequence, DNA sequence diversity, lower temperature optimum, G+C content, and carbohydrate utilization spectrum. Strain SEBR 5268 has been deposited in the Deutsche Sammlung von Mikroorganismen as strain DSM 9801.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-45-4-783
1995-10-01
2024-09-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/45/4/ijs-45-4-783.html?itemId=/content/journal/ijsem/10.1099/00207713-45-4-783&mimeType=html&fmt=ahah

References

  1. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S. 1979; Methanogens: reevaluation of a unique biological group. Microbiol. Rev. 43:260–296
    [Google Scholar]
  2. Ben-Bassat A., Zeikus J. G. 1981; Thermobacteroides acetoethylicus gen. nov. and spec. nov., a new chemoorganotrophic, anaerobic, thermophilic bacterium. Arch. Microbiol. 128:365–370
    [Google Scholar]
  3. Bernard F. P., Connan J., Magot M. 1992; Indigenous microorganisms in connate water of many oil fields: a new tool in exploration and production techniques, paper SPE 24811,. 467–476Proceedings of the 67th Annual Technical Conference and Exhibition of the Society of Petroleum EngineersSociety of Petroleum Engineers, Richardson, Tex
    [Google Scholar]
  4. Brenner D. J. 1978; Characterization and clinical identification of Enterobacteriaceae by DNA hybridization. Prog. Clin. Pathol. 7:71–117
    [Google Scholar]
  5. Brenner D. J., McWhorter A. C., Leete-Knudson J. K., Steigerwalt A. G. 1982; Escherichia vulneris: a new species of Enterobacteriaceae associated with human wounds. J. Clin. Microbiol. 15:1133–1140
    [Google Scholar]
  6. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal. Biochem. 81:461–466
    [Google Scholar]
  7. Cayol J.-L., Ollivier B., Patel B. K. C., Prensier G., Guezennec J., Garcia J.-L. 1994; Isolation and characterization of Halothermothrix orenii gen. nov., sp. nov., a halophilic, thermophilic, fermentative, strictly anaerobic bacterium. Int. J. Syst. Bacteriol. 44:534–540
    [Google Scholar]
  8. Cochrane W. J., Jones P. S., Sanders P. F., Holt D. M., Mosley M. J. 1988; Studies on the thermophilic sulfate-reducing bacteria from a souring North Sea oil field,. 301–316Proceedings of the Society of Petroleum Engineers European ConferenceSociety of Petroleum Engineers, Richardson, Tex
    [Google Scholar]
  9. Collins M. D., Lawson P. A., Willems A., Cordoba J. J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J. A. E. 1994; The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int. J. Syst. Bacteriol. 44:812–826
    [Google Scholar]
  10. Crosa J. H., Brenner D. J., Falkow S. 1973; Use of a single-strand-specific nuclease for analysis of bacterial and plasmid deoxyribonucleic acid homo- and heteroduplexes. J. Bacteriol. 115:904–911
    [Google Scholar]
  11. Davydova-Charakhch’yan I. A., Kuznetsova V. G., Mityushina L. L., Belayaev S. S. 1992; Methane-forming bacilli from oil fields of Tataria and Western Siberia. Mikrobiologiya 61:299–305
    [Google Scholar]
  12. Fardeau M.-L., Cayol J.-L., Magot M., Ollivier B. 1993; H2 oxidation in the presence of thiosulfate, by a Thermoanaerobacter strain isolated from an oil-producing well. FEMS Microbiol. Lett. 113:327–332
    [Google Scholar]
  13. Fardeau M.-L., Cayol J.-L., Magot M., Ollivier B. 1993; Hydrogen oxidation abilities in the presence of thiosulfate as electron acceptor within the genus Thermoanaerobacter. . Curr. Microbiol. 29:269–272
    [Google Scholar]
  14. Faudon C., Fardeau M.-L., Heim J., Patel B. K. C., Magot M., Ollivier B. 1995; Peptide and amino acid oxidation in the presence of thiosulfate by members of the genus Thermoanaerobacter. . Curr. Microbiol. 30:1–6
    [Google Scholar]
  15. Felsentein J. 1993; PHYLIP (phylogenetic inference package), version 3.51c. Department of Genetics; University of Washington, Seattle:
    [Google Scholar]
  16. Grimont P. A. D., Popoff M. Y., Grimont F., Coynault C., Lemelin M. 1980; Reproductibility and correlation study of three deoxyribonucleic acid hybridization procedures. Curr. Microbiol. 4:325–330
    [Google Scholar]
  17. Hungate R. E. 1969; A roll tube method for cultivation of strict anaerobes. Methods Microbiol 3B:117–132
    [Google Scholar]
  18. Jain M. K., Thompson T. E., Conway de Macario E., Zeikus J. G. 1987; Speciation of Methanobacterium strain Ivanov, as Methanobacterium ivanovii, sp. nov. Syst. Appl. Microbiol. 9:77–82
    [Google Scholar]
  19. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules,. 21–132 Munro H. N. Mammalian protein metabolism Academic Press; New York:
    [Google Scholar]
  20. Kumar S., Tamura K., Nei M. 1993; MEGA: Molecular Evolutionary Genetic Analysis, version 1.0. The Pennsylvania State University; University Park:
    [Google Scholar]
  21. Larsen N., Olsen G. J., Maidak B. L., McCaughey M. J., Overbeek R., Macke T. J., Marsh T. L., Woese C. R. 1993; The Ribosomal Database Project. Nucleic Acids Res 21: Suppl 3021–3023
    [Google Scholar]
  22. Lee Y. E., Jain M. K., Lee C., Lowe S. E., Zeikus J. G. 1993; Taxonomic distinction of saccharolytic thermophilic anaerobes: description of Ther-moanaerobacterium xylanolyticum gen. nov., sp. nov., and Thermoanaerobacterium saccharolyticum gen. nov., sp. nov.; reclassification of Thermoanaerobium brockii, Clostridium thermosulfurogenes, and Clostridium thermohydrosulfuricum El00-69 as Thermoanaerobacter brockii comb. nov., Thermoanaerobacterium thermosulfurigenes comb. nov., and Thermoanaerobacter thermohydrosulfuricus comb. nov., respectively; and transfer of Clostridium thermohydrosulfuricum 39E to Thermoanaerobacter ethanolicus. . Int. J. Syst. Bacteriol. 43:41–51
    [Google Scholar]
  23. Love C. A., Patel B. K. C., Nichols P. D., Stackebrandt E. 1993; Desulfotomaculum australicum, sp. nov., a thermophilic sulfate-reducing bacterium isolated from the Great Artesian Basin of Australia. Syst. Appl. Microbiol. 16:244–251
    [Google Scholar]
  24. Lowe S. E., Jain M. K., Zeikus J. G. 1993; Biology, ecology, and biotechnological applications of anaerobic bacteria adapted to environmental stresses in temperature, pH, salinity, or substrates. Microbiol. Rev. 57:451–509
    [Google Scholar]
  25. Macy J. M., Snellen J. E., Hungate R. E. 1972; Use of syringe methods for anaerobiosis. Am. J. Clin. Nutr. 25:1318–1323
    [Google Scholar]
  26. Meshbah M., Premachandran U., Whitman W. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol. 39:159–167
    [Google Scholar]
  27. Miller T. L., Wollin M. J. 1974; A serum modification of the Hungate technique for cultivating obligate anaerobes. Appl. Microbiol. 27:985–987
    [Google Scholar]
  28. Nazina T. N., Rozanova E. P. 1978; Thermophilic sulfate-reducing bacteria from oil strata. Mikrobiologiya 47:142–148
    [Google Scholar]
  29. Ng T. K., Weimer P. J., Gawel L. J. 1989; Possible nonanthropogenic origin of two methanogenic isolates from oil-producing wells in the San Miguelito field, Ventura County, California. Geomicrobiol. J. 7:185–192
    [Google Scholar]
  30. Pedersen K. 1993; The deep subterranean biosphere. Earth Sci. Rev. 34:243–260
    [Google Scholar]
  31. Pfennig N., Widdel F., Trüper H. G. 1981; The dissimilatory sulfate-reducing bacteria,. 926–940 Starr M. P., Stolp H., Truper H. G., Balows A., Schlegel H. G. The prokaryotes, 1 Springer-Verlag; Berlin:
    [Google Scholar]
  32. Rainey F. A., Stackebrandt E. 1993; Transfer of the type species of the genus Thermobacteroides to the genus Thermoanaerobacter as Thermoanaerobacter acetocthylicus (Ben-Bassat and Zeikus 1981) comb. nov., description of Coprothermobacter gen. nov., and reclassification of Thermobacteroides proteolyticus as Coprothermobacter proteolyticus (Ollivier et al. 1985) comb. nov.. Int. J. Syst. Bacteriol. 43:857–859
    [Google Scholar]
  33. Ravot G., Magot M., Fardeau M.-L., Patel B. K. C., Prensier G., Egan A., Garcia J.-L., Ollivier B. 1995; Thermotoga elfii sp. nov., a novel thermophilic bacterium from an African oil-producing well. Int. J. Syst. Bacteriol. 45:308–314
    [Google Scholar]
  34. Redburn A. C., Patel B. K. C. 1993; Phylogenetic analysis of Desulfotomaculum thermobenzoicum using polymerase chain reaction-amplified 16S rRNA-specific DNA. FEMS Microbiol. Lett. 113:81–86
    [Google Scholar]
  35. Schmid U., Giesel H., Schoberth S. M., Sahm H. 1986; Thermoanaerbacter finnii spec. nov., a new ethanologenic sporogenous bacterium. Syst. Appl. Microbiol. 8:80–85
    [Google Scholar]
  36. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44:846–849
    [Google Scholar]
  37. Stetter K. O., Huber R., Blochl E., Kurr M., Eden R. D., Fielder M., Cash H., Vance I. 1993; Hyperthermophilic Archaea are thriving in deep North Sea and Alaskan reservoirs. Nature (London) 365:743–745
    [Google Scholar]
  38. Szewzyk U., Szewzyk R., Stenstrom T. A. 1994; Thermophilic, anaerobic bacteria isolated from a deep borehole in granite in Sweden. Proc. Natl. Acad. Sci.USA 91:1810–1813
    [Google Scholar]
  39. Wiegel J., Ljungdahl L. G. 1981; Thermoanaerobacter ethanolicus gen. nov., spec. nov., a new extreme thermophilic, anaerobic bacterium. Arch. Microbiol. 128:343–348
    [Google Scholar]
  40. Winker S., Woese C. R. 1991; A definition of the domains Archaea, Bacteria and Eucarya in terms of small subunit ribosomal RNA characteristics. Syst. Appl. Microbiol. 13:161–165
    [Google Scholar]
  41. Winter J., Zellner G. 1990; Thermophilic anaerobic degradation of carbohydrates: metabolic properties of microorganisms from the different phases. FEMS Microbiol. Rev. 75:139–154
    [Google Scholar]
  42. Zeikus J. G., Hegge P. W., Anderson M. A. 1979; Thermoanaerobium brockii gen. nov. and sp. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium. Arch. Microbiol. 122:41–48
    [Google Scholar]
/content/journal/ijsem/10.1099/00207713-45-4-783
Loading
/content/journal/ijsem/10.1099/00207713-45-4-783
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error