1887

Abstract

Strains of sp. nov. and strains of sp. nov. were isolated from the hot spring at Vizela in northern Portugal and the hot spring at Alcafache in central Portugal, respectively. The strains of produce orange-red-pigmented colonies and have an optimum growth temperature of about 55°C, while the strains of produce yellow-pigmented colonies and have an optimum growth temperature of about 50°C. The strains of both species are catalase negative. These species can be distinguished from each other and from by biochemical characteristics, fatty acid composition data, and 16S rRNA gene sequence data. Our phylogenetic analysis showed that strains VI-R2 (T = type strain) and ALT-8 belong to the line of descent. The type strain of is strain VI-R2 (= DSM 9946), and the type strain of is strain ALT-8 (= DSM 9957).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-45-4-633
1995-10-01
2024-12-03
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/45/4/ijs-45-4-633.html?itemId=/content/journal/ijsem/10.1099/00207713-45-4-633&mimeType=html&fmt=ahah

References

  1. Brock T. D., Freeze H. 1969; Thermus aquaticus gen. n. and sp. n., a non-sporulating extreme thermophile. J. Bacteriol 98:289–297
    [Google Scholar]
  2. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal. Biochem 81:461–466
    [Google Scholar]
  3. De Soete G. 1983; A least squares algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626
    [Google Scholar]
  4. Donato M. M., Seleiro E. A., da Costa M. S. 1991; Polar lipid and fatty acid composition of strains of Thermus ruber. Syst. Appl. Microbiol 14:235–239
    [Google Scholar]
  5. Ferraz A. S., Carreto L., Tenreiro S., Nobre M. F., da Costa M. S. 1994; Polar lipids and fatty acid composition of Thermus strains from New Zealand. Antonie Leeuwenhoek 66:357–363
    [Google Scholar]
  6. Hensel R., Demharter W., Kandler O., Kroppenstedt R. M., Stackebrandt E. 1986; Chemotaxonomic and molecular-genetic studies of the genus Thermus: evidence for a phylogenetic relationship of Thermus aquaticus and Thermus ruber to the genus Deinococcus. Int. J. Syst. Bacteriol 36:444–453
    [Google Scholar]
  7. Hudson J. A., Morgan H. W., Daniel R. M. 1987; Thermus filiformis sp. nov., a filamentous caldoactive bacterium. Int. J. Syst. Bacteriol 37:431–436
    [Google Scholar]
  8. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. 21–132 Munro H. N. Mammalian protein metabolism Academic Press; New York:
    [Google Scholar]
  9. Kristjansson J. K., Hjorleifsdottir S., Marteinsson V. T., Alfredsson G. A. 1994; Thermus scoloductus, sp. nov., a pigment-producing thermophilic bacterium from hot tap water in Iceland and including Thermus sp. X-l. Syst. Appl. Microbiol 17:44–50
    [Google Scholar]
  10. Kuykendall L. D., Roy M. A., O’Neill J. J., Devine T. E. 1988; Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int. J. Syst. Bacteriol 38:358–361
    [Google Scholar]
  11. Loginova L. G., Egorova L. A., Golovacheva R. S., Seregina L. M. 1984; Thermus ruber sp. nov., nom. rev. Int. J. Syst. Bacteriol 34:498–499
    [Google Scholar]
  12. Loginova L. G., Khraptsova G. I., Bogdanova T. I., Egorova L. A., Seregina L. M. 1978; A thermophilic bacterium Thermus ruber producing a bright orange pigment. Microbiology (Engl. Transl. Mikrobiologiya) 47:456–457
    [Google Scholar]
  13. Manaia C. M., da Costa M. S. 1991; Characterization of halotolerant Thermus isolates from shallow marine hot springs on S. Miguel, Azores. J. Gen. Microbiol 137:2643–2648
    [Google Scholar]
  14. Manaia C. M., Hoste B., Gutierrez M. C., Gills M., Ventosa A., Kersters K., da Costa M. S. 1994; Halotolerant Thermus strains from marine and terrestrial hot springs belong to Thermus thermophilus (ex Oshima and Imahori, 1974) nom. rev. emend. Syst. Appl. Microbiol 17:526–532
    [Google Scholar]
  15. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol 39:159–167
    [Google Scholar]
  16. Oshima T., Imahori K. 1974; Description of Thermus thermophilus (Yoshida and Oshima) comb. nov., a nonsporulating thermophilic bacterium from a Japanese thermal spa. Int. J. Syst. Bacteriol 24:102–112
    [Google Scholar]
  17. Prado A., da Costa M. S., Madeira V. M. C. 1988; Effect of growth temperature on the lipid composition of two strains of Thermus sp. J. Gen. Microbiol 134:1653–1660
    [Google Scholar]
  18. Rainey F. A., Dorsch M., Morgan H. W., Stackebrandt E. 1992; 16S rDNA analysis of Spirochaeta thermophila: its phylogenetic position and implications for the systematics of the order Spirochaetales. Syst. Appl. Microbiol 15:197–202
    [Google Scholar]
  19. Rainey F. A., Stackebrandt E. 1993; 16S rDNA analysis reveals phylogenetic diversity among the polysaccharolytic clostridia. FEMS Microbiol. Lett 113:125–128
    [Google Scholar]
  20. Ruffett M., Hammond S., Williams R. A. D., Sharp R. J. 1992; A taxonomic study of red pigmented gram negative thermophiles. 74 Geirsdottir A. M., Brown H. P., Skjenstad T. Conference and Program Abstracts on Thermophiles: Science and TechnologyIceTec, Reykjavik, Iceland
    [Google Scholar]
  21. Santos M. A., Williams R. A. D., da Costa M. S. 1989; Numerical taxonomy of Thermus isolates from hot springs in Portugal. Syst. Appl. Microbiol 12:310–315
    [Google Scholar]
  22. Saul D. J., Rodrigo A. G., Reeves R. A., Williams L. C., Borges K. M., Morgan H. W., Bergquist P. L. 1993; Phylogeny of twenty Thermus isolates constructed from16S rRNA gene sequence data. Int. J. Syst. Bacteriol 43:754–760
    [Google Scholar]
  23. Sharp R. J., Williams R. A. D. 1988; Properties of Thermus ruber strains isolated from Icelandic hot springs and DNA-DNA homology of Thermus ruber and Thermus aquaticus. Appl. Environ. Microbiol 54:2049–2053
    [Google Scholar]
  24. Silva M. T., Macedo P. M. 1987; Improved Thiery staining for the ultrastructural detection of polysaccharides. J. Submicrosc. Cytol 19:677–681
    [Google Scholar]
  25. Silva M. T., Sousa J. C. F. 1973; infrastructure of the cell wall and cytoplasmic membrane of gram-negative bacteria with different fixation techniques. J. Bacteriol 113:953–962
    [Google Scholar]
  26. Skerman V. B. D., McGowan V., Sneath P. H. A.. 1980; Approved lists of bacterial names. Int. J. Syst. Bacteriol 30:225–420
    [Google Scholar]
  27. Smibert R. M., Krieg N. R. 1981; General characterization. 409–43 Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Manual of methods for general bacteriology American Society for Microbiology; Washington, D.C.:
    [Google Scholar]
  28. Tindall B. J. 1989; Fully saturated menaquinones in the archaebacterium Pyrobaculum islandicum. FEMS Microbiol. Lett 60:251–254
    [Google Scholar]
  29. Vesey G., Dennis P. J., Lee J. V., West A. A. 1988; Further development of simple tests to differentiate the legionellas. J. Appl. Bacteriol 65:339–345
    [Google Scholar]
  30. Weisburg W. G., Giovanonni S. J., Woese C. R. 1989; The Deinococcus- Thermus phylum and the effect of rRNA composition on phylogenetic tree construction. Syst. Appl. Microbiol 11:128–134
    [Google Scholar]
  31. Williams R. A. D. 1989; Biochemical taxonomy of the genus Thermits. 82–97 da Costa M. S., Duarte J. C., Williams R. A. D. Microbiology of extreme environments and its potential for biotechnology Elsevier; London:
    [Google Scholar]
  32. Williams R. A. D., da Costa M. S. 1992; The genus Thermus and related microorganisms. 3745–3753 Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. The prokaryotes, 2. Springer-Verlag; New York:
    [Google Scholar]
/content/journal/ijsem/10.1099/00207713-45-4-633
Loading
/content/journal/ijsem/10.1099/00207713-45-4-633
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error