1887

Abstract

Three heterotrophic bacterial strains were isolated from different locations in Puget Sound, Washington, by using biphenyl as the principal carbon source. These strains grow by using a limited number of organic compounds, including the aromatic hydrocarbons naphthalene, phenanthrene, anthracene, and toluene, as sole carbon sources. These aerobic, gram-negative rods are motile by means of single polar flagella. Their 16S rRNA sequences indicate that they are all members of the subdivision of the . Their closest known relatives are the genera and (genera of methane-oxidizing bacteria), uncultured sulfur-oxidizing symbionts found in marine invertebrates, and clone FL5 containing 16S ribosomal DNA amplified from an environmental source. However, the Puget Sound bacteria do not use methane or methanol as a carbon source and do not oxidize reduced sulfur compounds. Furthermore, a 16S rRNA base similarity comparison revealed that these bacteria are sufficiently different from other bacteria to justify establishment of a new genus. On the basis of the information summarized above, we describe a new genus and species, , for these bacteria; strain PS-1 is the type strain of . .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-45-1-116
1995-01-01
2022-05-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/45/1/ijs-45-1-116.html?itemId=/content/journal/ijsem/10.1099/00207713-45-1-116&mimeType=html&fmt=ahah

References

  1. Ahmad D., Sylvestre M., Sondossi M., Mass’e R. 1991; Bioconversion of 2-hydroxy-6-oxo-6-(4′-chlorophenyl)hexa-2,4-dienoic acid, the meta-cleavage product of 4-chlorobiphenyl. J. Gen. Microbiol 137:1375–1385
    [Google Scholar]
  2. Ausubel F. M. 1994 Current protocols in molecular biology John Wiley & Sons, Inc; New York:
    [Google Scholar]
  3. Barns S. Department of Biology, Indiana University; Bloomington: 1993 Personal communication
    [Google Scholar]
  4. Baumann L., Baumann P., Mandel M., Allen R. D. 1972; Taxonomy of aerobic marine eubacteria. J. Bacteriol 110:402–29
    [Google Scholar]
  5. Biddell J. P., Spotte S. 1985 Artificial seawaters Jones and Bartlett Publisher, Inc; Boston:
    [Google Scholar]
  6. Bratina B. J., Brusseau G. A., Hanson R. S. 1992; Use of 16S rRNA analysis to investigate phylogeny of methylotrophic bacteria. Int. J. Syst. Bacteriol 42:645–648
    [Google Scholar]
  7. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F. 1978; Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc. Natl. Acad. Sci. USA 75:4801–4805
    [Google Scholar]
  8. DeLong E. F., Franks D. G., Alldredge A. L. 1993; Phylogenetic diversity of aggregate-attached vs. free-living marine bacterial assemblages. Limnol. Oceanogr 38:924–934
    [Google Scholar]
  9. Distel D. L., Lane D. J., Olsen G. J., Giovannoni S. J., Pace B., Pace N. R., Stahl D. A., Felbeck H. 1988; Sulfur-oxidizing bacterial endosymbionts: analysis of phylogeny and specificity by 16S rRNA sequences. J. Bacteriol 170:2506–2510
    [Google Scholar]
  10. Distel D. L., Wood A. P. 1992; Characterization of the gill symbiont of Thyasira flexuosa (Thyasiridae: Bivalvia) by use of polymerase chain reaction and 16S rRNA sequence analysis. J. Bacteriol 174:6317–6320
    [Google Scholar]
  11. Evans P. J., Mang D. T., Kim K. S., Young L. Y. 1991; Anaerobic degradation of toluene by a denitrifying bacterium. Appl. Environ. Microbiol 57:1139–1145
    [Google Scholar]
  12. Fryer J. L., Lannan C. N., Giovannoni S. J., Wood N. D. 1992; Piscirickettsia salmonis gen. nov., sp. nov., the causative agent of an epizootic disease in salmonid fishes. Int. J. Syst. Bacteriol 42:120–126
    [Google Scholar]
  13. Garcia-Valdés E., Cozar E., Rotger R., Lalucat J., Ursing J. 1988; New naphthalene-degrading marine Pseudomonas strains. Appl. Environ. Microbiol 54:2478–2485
    [Google Scholar]
  14. Gauthier M. J., Lafay B., Christen R., Fernandez L., Acquaviva M., Bonin P., Bertrand J. C. 1992; Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int. J. Syst. Bacteriol 42:568–576
    [Google Scholar]
  15. Gautom R. K., Fritche T. R. Department of Microbiology University of Washington; Seattle: 1993 Personal communication
    [Google Scholar]
  16. Genetics Computer Group 1993 Fragment assembly computer programs Genetics Computer Group; Madison, Wise:
    [Google Scholar]
  17. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. 1994 Methods for general and molecular bacteriology American Society for Microbiology; Washington, D.C.:
    [Google Scholar]
  18. Ghosh D. K., Mishra A. K. 1983; Oxidation of phenanthrene by a strain of Micrococcus: evidence of protocatechuate pathway. Curr. Microbiol 9:219–224
    [Google Scholar]
  19. Gilbert D. G. 1992; SeqApp, a biological sequence editor and analysis program for Macintosh computers. Published electronically on the Internet available via anonymous ftp to ftp.bio.indiana.edu
    [Google Scholar]
  20. Guerin W. F., Jones G. E. 1988; Mineralization of phenanthrene by a Mycobacterium sp. Appl. Environ. Microbiol 54:937–944
    [Google Scholar]
  21. Heitkamp M. A., Franklin W., Cerniglia C. E. 1988; Microbial metabolism of polycyclic aromatic hydrocarbons: isolation and characterization of a pyrene-degrading bacterium. Appl. Environ. Microbiol 54:2549–2555
    [Google Scholar]
  22. Herwig R. P., Staley J. T. 1986; Anaerobic bacteriology of the intestinal tracts of Icelandic fin whales. FEMS Microbiol. Ecol 38:361–371
    [Google Scholar]
  23. Holt J. G., Krieg N. R., Sneath P. H. A., Staley J. T., Williams S. T. 1994 Bergey’s manual of determinative bacteriology, 9th. Williams & Wilkins; Baltimore:
    [Google Scholar]
  24. Jerina D. M., Selander H., Yagi H., Wells M. C., Davey J. F., Mahadevan V., Gibson D. T. 1976; Dihydrodiols from anthracene and phenanthrene. J. Am. Chem. Soc 98:5988–5996
    [Google Scholar]
  25. Kiyohara H., Nagao K., Kouno K., Yano K. 1982; Phenanthrene-degrading phenotype of Alcaligenes faecalis AFK2. Appl. Environ. Microbiol 43:458–461
    [Google Scholar]
  26. Krieg N. R., Holt J. G. 1984 Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co; Baltimore:
    [Google Scholar]
  27. Larsen N., Olsen G. J., Maidak B. L., McCaughey M. J., Overbeek R., Macke T. J., Marsh T. L., Woese C. R. 1993; The ribosomal database project. Nucleic Acids Res 21:3021–3023
    [Google Scholar]
  28. Leahy J. G., Colwell R. R. 1990; Microbial degradation of hydrocarbons in the environment. Microbiol. Rev 54:305–315
    [Google Scholar]
  29. Manali M., Kneifel W. 1990; Rapid methods for differentiating Gram-positive from Gram-negative aerobic and facultative anaerobic bacteria. J. Appl. Bacteriol 69:822–827
    [Google Scholar]
  30. Martinez-Murcia A. J., BemToch S., Collins M. D. 1992; Phylogenetic interrelationships of members of the genera Aeromonas and Plesiomonas as determined by 16S ribosomal DNA sequencing: lack of congruence with results of DNA-DNA hybridizations. Int. J. Syst. Bacteriol 42:412–421
    [Google Scholar]
  31. MIDI, Inc 1993 Microbial Identification System operating manual version 4 MIDI, Inc., Newark; Del:
    [Google Scholar]
  32. Mueller J. G., Chapman P. J., Blattmann B. O., Pritchard P. H. 1990; Isolation and characterization of a fluoranthene-utilizing strain of Pseudomonas paucimobilis. Appl. Environ. Microbiol 56:1079–1086
    [Google Scholar]
  33. Nestler F. H. M. 1974; Characterization of wood-preserving coal-tar creosote by gas-liquid chromatography. Anal. Chem 46:46–53
    [Google Scholar]
  34. Okpokwasili G. C., Somerville C. C., Grimes D. J., Colwell R. R. 1986; Plasmid-associated phenanthrene degradation by Chesapeake Bay sediment bacteria. A. Colloq. Inst. Fran. Rech. Exploit. Mer 3:601–610
    [Google Scholar]
  35. Olsen G. J. 1993 DNAml_rates_l_0 University of Illinois; Urbana:
    [Google Scholar]
  36. Olsen G. J., Matsuda H., Hagstrom R., Overbeek R. 1994; fastDNAml: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. CABIOS 10:41–48
    [Google Scholar]
  37. Reysenbach A. L., Giver L. J., Wickham G. S., Pace N. R. 1992; Differential amplification of rRNA genes by polymerase chain reaction. Appl. Environ. Microbiol 58:3417–3418
    [Google Scholar]
  38. Ruimy R., Breittmayer V., Elbaze P., Lafay B. Unpublished data
  39. Shelton D. R., Tiedje J. M. 1984; Isolation and partial characterization of bacteria in an anaerobic consortium that mineralizes 3-chlorobenzoic acid. Appl. Environ. Microbiol 48:840–848
    [Google Scholar]
  40. Staley J. T. 1968; Prosthecomicrobium and Ancalomicrobium: new freshwater prosthecate bacteria. J. Bacteriol 95:1921–1942
    [Google Scholar]
  41. Stein J. E., Reichert W. L., Nishimoto M., Varanasi U. 1990; Overview of studies on liver carcinogenesis in English sole from Puget Sound; evidence for a xenobiotic chemical etiology. II. Biochemical studies. Sci. Total Environ 94:51–69
    [Google Scholar]
  42. Varanasi U., Stein J. E. 1991; Disposition of xenobiotic chemicals and metabolites in marine organisms. Environ. Health Perspect 90:93–100
    [Google Scholar]
  43. West P. A., Okpokwasili G. C., Brayton P. R., Grimes D. J., Colwell R. R. 1984; Numerical taxonomy of phenanthrene-degrading bacteria isolated from the Chesapeake Bay. Appl. Environ. Microbiol 48:988–993
    [Google Scholar]
  44. Woese C. R. Unpublished data
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-45-1-116
Loading
/content/journal/ijsem/10.1099/00207713-45-1-116
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error