1887

Abstract

Abstract

Pectinophiles are bacteria that utilize pectin and only a few related compounds as substrates. Obligately anaerobic pectinophiles have been isolated from the intestinal tracts and gingivae of humans and from the rumina of cattle. We isolated three strains of pectinophilic bacteria from colonic contents of pigs but were unable to isolate pectinophiles from the rumen contents of four sheep, even when the animals were fed a high-pectin diet. The pectinophiles isolated from pigs were strictly anaerobic, motile, gram-positive rods (0.36 to 0.56 by 2.4 to 3.1 μm). Pectin, polygalacturonic acid, and gluconate were the only substrates that supported rapid growth. All three strains grew slowly on either lactose or cellobiose and fermented fructose after a lag of several days. Pectin was degraded by means of an extracellular pectin methylesterase and a Ca-dependent exopectate lyase. A comparison of the 16S rRNA sequences of these isolates with the 16S rRNA sequences of other gram-positive bacteria revealed a specific relationship with (level of similarity, 94%). The Gram reaction, formation of spore-like structures, and the utilization of lactose and cellobiose differentiated the pig isolates from previously described pectinophiles. The pig isolates represent a previously undescribed species of the genus , for which we propose the name .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-44-1-87
1994-01-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/44/1/ijs-44-1-87.html?itemId=/content/journal/ijsem/10.1099/00207713-44-1-87&mimeType=html&fmt=ahah

References

  1. Allison M. J., Dawson K. A., Mayberry W. R., Foss J. G. 1985; Oxalobacter formigenes gen. nov., sp. nov.: oxalate degrading anaerobes that inhabit the gastrointestinal tract. Arch. Microbiol. 141 1 7
    [Google Scholar]
  2. Allison M. J., Robinson I. M., Bucklin J. A., Booth G. D. 1979; Comparison of bacterial populations of the pig cecum and colon based upon enumeration with specific energy sources. Appl. Environ. Microbiol. 37 1142 1151
    [Google Scholar]
  3. Amann R. I., Lin C., Key R., Montgomery L., Stahl D. A. 1992; Diversity among Fibrobacter isolates: towards a phylogenetic classification. Syst. Appl. Microbiol. 15 23 31
    [Google Scholar]
  4. Bryant M. P. 1986; Lachnospira. 1375 1376 Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Bergey’s manual of systematic bacteriology 2 Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  5. Bryant M. P., Burkey L. A. 1953; Cultural methods and some characteristics of some of the more numerous groups of bacteria in the bovine rumen. J. Dairy Sci. 36 205 217
    [Google Scholar]
  6. Butine T. J., Leedle J. A. Z. 1989; Enumeration of selected anaerobic bacterial groups in cecal and colonic contents of growing-finishing pigs. Appl. Environ. Microbiol. 55 1112 1116
    [Google Scholar]
  7. Cerbulis J. 1978; p-Anisidine-phosphoric acid as a color reagent for sugar derivatives and halogen compounds. J. Chromatogr. 155 226 228
    [Google Scholar]
  8. Cornick N. A. et al. 1990 Abstr. Annu. Meet. Am. Soc. Microbiol. 1990 Q146 312
    [Google Scholar]
  9. DeSoete G. 1973; A least-squares algorithm for fitting additive trees to proximity data. Psychometrika 48 621 626
    [Google Scholar]
  10. Devereux R., He S., Doyle C. L., Orkland S., Stahl D. A., LeGall J., Whitman W. B. 1990; Diversity and origin of Desulfovibrio species: phylogenetic definition of a family. J. Bacteriol. 172 3609 3619
    [Google Scholar]
  11. Doetsch R. N. 1981; Determinative methods of light microscopy. 21 33 Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Manual of methods for general bacteriology American Society for Microbiology; Washington, D.C.:
    [Google Scholar]
  12. Dowell V. R., Lombard G. L. 1977 Presumptive identification of anaerobic nonsporeforming gram-negative bacilli Centers for Disease Control; Atlanta:
    [Google Scholar]
  13. Felsenstein J. 1984; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39 783 791
    [Google Scholar]
  14. Holdeman L. V., Cato E. P., Moore W. E. C. 1977 Anaerobe laboratoiy manual , 4th ed.. Virginia Polytechnic Institute and State University; Blacksburg:
    [Google Scholar]
  15. Hull I. A., Gill R. E., Hsu P., Minshew B. H., Falkow S. 1981; Construction and expression of recombinant plasmids encoding type 1 or D-mannose-resistant pili from a urinary tract infection Escherichia coli isolate. Infect. Immun. 33 933 938
    [Google Scholar]
  16. Jensen N. S., Canale-Parola E. 1986; Bacteroides pectinophilus sp. nov. and Bacteroides galacturonicus sp. nov.: two pectinolytic bacteria from the human intestinal tract. Appl. Environ. Microbiol. 52 880 887
    [Google Scholar]
  17. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. 21 132 Munro H. N. Mammalian protein metabolism Academic Press, Inc.; New York:
    [Google Scholar]
  18. Kertesz Z. I. 1957; Preparation and determination of pectic substances. Methods Enzymol 3 27 30
    [Google Scholar]
  19. Koransky J. R., Allen S. D., Dowell V. R. 1978; Use of ethanol for selective isolation of sporeforming microorganisms. Appl. Environ. Microbiol. 35 762 765
    [Google Scholar]
  20. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227 680 685
    [Google Scholar]
  21. Lane D. J. 1991; 16S/23S rRNA sequencing. 115 175 Stackebrandt E., Goodfellow M. Nucleic acid techniques in bacterial systematics John Wiley & Sons; Chichester, United Kingdom:
    [Google Scholar]
  22. Lane D. J., Pace B., Olsen G. J., Stahl D. A., Sogin M. L., Pace N. R. 1985; Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl. Acad. Sci. USA 82 6955 6959
    [Google Scholar]
  23. Leedle J. A. Z., Hespell R. B. 1980; Differential carbohydrate media and anaerobic replica plating techniques in delineating carbohydrate-utilizing subgroups in rumen bacterial populations. Appl. Environ. Microbiol. 39 709 719
    [Google Scholar]
  24. Liu Y. K., Luh B. S. 1978; Preparation and thin-layer chromatography of oligogalacturonic acids. J. Chromatogr. 151 39 49
    [Google Scholar]
  25. Mandel M., Marmur J. 1968; Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol. 12 195 206
    [Google Scholar]
  26. McComb E. A., McCready R. M. 1958; Use of the hydroxamic acid reaction for determining pectinesterase activity. Stain Technol. 33 129 131
    [Google Scholar]
  27. Montgomery L., Flesher B., Stahl D. A. 1988; Transfer of Bacteroides succinogenes (Hungate) to Fibrobacter gen. nov. as Fibrobacter succinogenes comb. nov. and description of Fibrobacter intestinalis sp. nov.. Int. J. Syst. Bacteriol. 38 430 435
    [Google Scholar]
  28. Moore W. E. C. (Virginia Polytechnic Institute and State University) 1992 Personal communication
    [Google Scholar]
  29. Nelson N. 1944; A photometric adaptation of the Somogyi method for the determination of glucose. J. Biol. Chem. 153 375 380
    [Google Scholar]
  30. Olsen J. O., Larsen N., Woese C. R. 1991; The Ribosomal Database Project. Nucleic Acids Res. 19 (Suppl.) 2017 2021
    [Google Scholar]
  31. Pace B., Matthews E. A., Johnson K. K., Cantor C. R., Pace N. R. 1982; Conserved 5S rRNA complement to tRNA is not required for protein synthesis. Proc. Natl. Acad. Sci. USA 79 36 40
    [Google Scholar]
  32. Peterson G. L. 1977; A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal. Biochem. 83 346 356
    [Google Scholar]
  33. Rexova-Benkova L., Markovic O. 1976; Pectic enzymes. Adv. Carbohydr. Chem. 33 323 385
    [Google Scholar]
  34. Salanitro J. P., Muirhead P. A. 1975; Quantitative method for the gas chromatographic analysis of short-chain monocarboxylic and dicarboxylic acids in fermentation media. Appl. Microbiol. 29 374 381
    [Google Scholar]
  35. Smibert R. M., Burmeister J. A. 1983; Treponema pectinovorum sp. nov. isolated from humans with periodontitis. Int. J. Syst. Bacteriol. 33 852 856
    [Google Scholar]
  36. Stanton T. B., Savage D. C. 1983; Roseburia cecicola gen. nov., sp. nov., a motile, obligately anaerobic bacterium from a mouse cecum. Int. J. Syst. Bacteriol. 33 618 627
    [Google Scholar]
  37. Swofford D. L., Olsen G. J. 1990; Phylogeny reconstruction. 411 501 Hillis D. M., Moritz C. Molecular systematics Sinauer Associates; Sunderland, Mass:
    [Google Scholar]
  38. Wayne L. G., Brenner D. J., Cowell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., Stackenbrandt E., Starr M. P., Trüper H. G. 1987; Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int. J. Syst. Bacteriol. 37 463 464
    [Google Scholar]
  39. Weber F. H., Canale-Parola E. 1984; Pectinolytic enzymes of oral spirochetes from humans. Appl. Environ. Microbiol. 48 61 67
    [Google Scholar]
  40. Woese C. R., Gutell R., Gupta R., Noller H. F. 1983; Detailed analysis of the higher-order structure of 16S-like ribosomal ribonucleic acids. Microbiol. Rev. 47 621 669
    [Google Scholar]
  41. Woods R. S. 1966; An English-classical dictionary for the use of taxonomists. Pomona College Press; Pomona, Calif:
    [Google Scholar]
  42. Ziolecki A., Wojciechowicz M. 1980; Small pectinolytic spirochetes from the rumen. Appl. Environ. Microbiol. 39 919 922
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-44-1-87
Loading
/content/journal/ijsem/10.1099/00207713-44-1-87
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error