1887

Abstract

Levels of DNA relatedness between strains isolated from root nodules of and reference strains of different species were determined by performing DNA-DNA hybridization experiments (S1 nuclease method). The nine strains examined were members of three genomic groups previously delineated by a restriction fragment length polymorphism analysis among strains isolated from at different sites in France. In agreement with the results of the restriction fragment length polymorphism analysis, three genomic species were found. We confirmed that one of these species corresponded to since the strain examined was 100% related to the type strain of this species. The other two species were new genomic species which were less than 21% related to reference strains belonging to other species, including and , and were 18% related to each other. As determined by an analysis of partial 16S ribosomal DNA sequences, each of the genomic species was found to belong to a lineage independent from the lineages of previously described species. Nevertheless, they were included in the group formed by the fast-growing species. Both genomic species 1 and genomic species 2 contained a majority of strains which were capable of nodulating both and , like However, they also contained strains with a nodulation phenotype restricted to , like bv. phaseoli and bv. phaseoli. Our data are the first evidence that in Europe species other than nodulate

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-43-4-761
1993-10-01
2022-09-30
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/43/4/ijs-43-4-761.html?itemId=/content/journal/ijsem/10.1099/00207713-43-4-761&mimeType=html&fmt=ahah

References

  1. Beringer J. E. 1974; R factor transfer in Rhizobium leguminosarum. J. Gen. Microbiol. 84:188–198
    [Google Scholar]
  2. Brenner D. J., McWorter A. C., Leete Knutson J. K., Steigerwalt A. G. 1982; Escherichia vulneris: a new species of Enter-obacteriaceae associated with human wounds. J. Clin. Microbiol. 15:1133–1140
    [Google Scholar]
  3. Bromfield E. S. P., Barran L. R. 1990; Promiscuous nodulation of Phaseolus vulgaris, Macroptilium atropur-pureum, and Leucaena leucocephala by indigenous Rhizobium meliloti. Can. J. Microbiol. 36:369–372
    [Google Scholar]
  4. Brosius J., Dull T. J., Sleeter D. D., Noller H. F. 1981; Gene organization and primary structure of a ribosomal RNA operon from E. coli. J. Mol. Biol. 148:107–127
    [Google Scholar]
  5. Chen W. X., Li G. S., Qi Y. L., Wang E. T., Yuan H. L., Li J. L. 1991; Rhizobium huakuii sp. nov. isolated from the root nodules of Astragalus sinicus. Int. J. Syst. Bacteriol. 41:275–280
    [Google Scholar]
  6. Crow Y. L., Jarvis B. D. W., Greenwood R. M. 1981; Deoxyribonucleic acid homologies among acid-producing strains of Rhizobium. Int. J. Syst. Bacteriol. 31:152–172
    [Google Scholar]
  7. Eardly B. D., Hannaway D. B., Bottomley P. J. 1985; Characterization of rhizobia from ineffective alfafa nodules: ability to nodulate bean plants [Phaseolus vulgaris (L.) Savi.]. Appl. Environ. Microbiol. 50:1422–1427
    [Google Scholar]
  8. Eardly B. D., Young J. P. W., Selander R. K. 1992; Phylogenetic position of Rhizobium sp. strain Or 191, a symbiont of both Medicago sativa and Phaseolus vulgaris, based on partial sequences of the 16S rRNA and nifH genes. Appl. Environ. Microbiol. 58:1809–1815
    [Google Scholar]
  9. Faulkner D. A., Jurka J. 1988; Multiple aligned sequence editor (MASE). Trends Biochem. Sci. 13:321–322
    [Google Scholar]
  10. Geniaux E., Laguerre G., Amarger N. Mol. Ecol. in press
    [Google Scholar]
  11. Graham P. H., Parker C. A. 1964; Diagnostic features in the characterization of the root-nodule bacteria of legumes. Plant Soil 20:383–386
    [Google Scholar]
  12. Grimont P. A. D., Popoff M. Y., Grimont F., Coynault C., Lemelin M. 1980; Reproducibility and correction study of three deoxyribonucleic acid hybridization procedures. Curr. Microbiol. 4:325–330
    [Google Scholar]
  13. Higgins D. G., Sharp P. M. 1988; Clustal: a package for performing multiple alignment on a microcomputer. Gene 73:237–244
    [Google Scholar]
  14. Jordan D. C. 1984; Family III, Rhizobiaceae. p. 234–242 In Krieg N. R., Holt J. G. (ed.) Bergey’s manual of systematic bacteriology vol. 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  15. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. p. 21–132 In Munro H. N. (ed.) Mammalian protein metabolism Academic Press; New York:
    [Google Scholar]
  16. Laguerre G., Bardin M., Amarger N. Submitted for publication
  17. Laguerre G., Geniaux E., Mazurier S. I., Rodriguez Casar-telli R., Amarger N. 1993; Conformity and diversity among field isolates of Rhizobium leguminosarum bv viciae, bv trifolii and bv phaseoli revealed by DNA hybridization using chromosome and plasmid probes. Can. J. Microbiol. 39:412–419
    [Google Scholar]
  18. Lange R. T. 1961; Nodule bacteria associated with the indigenous Leguminosae of South Western Australia. J. Gen. Microbiol. 26:351–359
    [Google Scholar]
  19. Lindstrom K. 1989; Rhizobium galegae, a new species of legume root nodule bacteria. Int. J. Syst. Bacteriol. 39:365–367
    [Google Scholar]
  20. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular cloning: a laboratory manual Cold Spring Harbor Laboratory; Cold Spring Harbor, N.Y.:
    [Google Scholar]
  21. Martinez E., Flores M., Brom S., Romero D., Davila G., Palacios R. 1988; Rhizobium phaseoli: a molecular genetics view. Plant Soil 108:179–184
    [Google Scholar]
  22. Martinez E., Pardo M. A., Palacios R., Cevallos M. A. 1985; Reiteration of nitrogen fixation gene sequences and specificity to Rhizobium in nodulation and nitrogen fixation in Phaseolus vulgaris. J. Gen. Microbiol. 131:1779–1786
    [Google Scholar]
  23. Martinez-Romero E., Segovia L., Mercante F. M., Franco A. A., Graham P., Pardo M. A. 1991; Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. Int. J. Syst. Bacteriol. 41:417–426
    [Google Scholar]
  24. Mazurier S. I. 1989; Diversite de populations naturelles nodu- lantes de Rhizobium leguminosarum. Ph.D. thesis. Universite Claude-Bernard Lyon I, Villeurbanne, France
    [Google Scholar]
  25. Murray R. G. E., Brenner D. J., Colwell R. R., De Vos P., Goodfellow M., Grimont P. A. D., Pfennig N., Stackebrandt E., Zavarzin G. A. 1990; Report of the Ad Hoc Committee on Approaches to Taxonomy within the Proteobacteria. Int. J. Syst. Bacteriol. 40:213–215
    [Google Scholar]
  26. Nazaret S., Cournoyer B., Normand P., Simonet P. 1991; Phylogenetic relationships among Frankia genomic species determined by use of amplified 16S rDNA sequences. J. Bacteriol. 173:4072–4078
    [Google Scholar]
  27. Pinero D., Martinez E., Selander R. K. 1988; Genetic diversity and relationships among isolates of Rhizobium leguminosarum biovar phaseoli. Appl. Environ. Microbiol. 54:2825–2832
    [Google Scholar]
  28. Quinto C., de la Vega H., Flores M., Fernandez L., Ballado T., Soberon G., Palacios R. 1982; Reiteration of nitrogen fixation gene sequences in Rhizobium phaseoli. Nature (London) 299:724–726
    [Google Scholar]
  29. Rigby P. W. J., Dieckmann M., Rhode C., Berg P. 1977; Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. Int. J. Syst. Bacteriol. 113:237–251
    [Google Scholar]
  30. Roberts G. P., Leps W. T., Silver L. E., Brill W. J. 1980; Use of two-dimensional polyacrylamide gel electrophoresis to identify and to classify Rhizobium strains. Appl. Environ. Microbiol. 39:326–333
    [Google Scholar]
  31. Sadowsky M. J., Cregan P. B., Keyser H. H. 1988; Nodulation and nitrogen fixation efficacy of Rhizobium fredii with Phaseolus vulgaris genotypes. Appl. Environ. Microbiol. 54:1907–1910
    [Google Scholar]
  32. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406–425
    [Google Scholar]
  33. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463–5467
    [Google Scholar]
  34. Scholia M. H., Elkan G. H. 1984; Rhizobium fredii sp. nov., a fast-growing species that effectively nodulates soybeans. Int. J. Syst. Bacteriol. 34:484–486
    [Google Scholar]
  35. Segovia L., Pinero D., Palacios R., Martinez-Romero E. 1991; Genetic structure of a soil population of nonsymbiotic Rhizobium leguminosarum. Appl. Environ. Microbiol. 57:426–433
    [Google Scholar]
  36. Segovia L., Young J. P. W., Martinez-Romero E. 1993; Reclassification of American Rhizobium leguminosarum biovar phaseoli type I strains in a new species, Rhizobium etli sp. nov. Int. J. Syst. Bacteriol. 43:374–377
    [Google Scholar]
  37. Stackebrandt E., Murray R. G. E., Truper H. G. 1988; Proteobacteria classis nov., a name for the phylogenetic taxon that includes the “purple bacteria and their relatives.” Int. J. Syst. Bacteriol.. 38:321–325
    [Google Scholar]
  38. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., Stackebrandt E., Starr M. P., Truper H. G. 1987; Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int. J. Syst. Bacteriol. 37:463–464
    [Google Scholar]
  39. Willems A., Collins M. D. 1993; Phylogenetic analysis of rhizobia and agrobacteria based on 16S rRNA gene sequences. Int. J. Syst. Bacteriol. 43:305–313
    [Google Scholar]
  40. Woese C. R., Stackebrandt E., Weisburg W. G., Paster B. J., Madigan M. T., Fowler V. J., Hahn C. M., Blanz P., Gupta R., Nealson K. H., Fox G. E. 1983; The phylogeny of purple bacteria: the alpha subdivision. Syst. Appl. Microbiol. 5:315–326
    [Google Scholar]
  41. Young J. P. W. 1985; Rhizobium population genetics: enzyme polymorphism in isolates from peas, clover, beans and lucerne grown at the same site. J. Gen. Microbiol. 131:2399–2408
    [Google Scholar]
  42. Young J. P. W., Downer H. L., Eardly B. D. 1991; Phylogeny of the phototrophic Rhizobium strain BX4/1 by polymerase chain reaction sequencing of a 16S rRNA gene segment. J. Bacteriol. 173:2271–2277
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-43-4-761
Loading
/content/journal/ijsem/10.1099/00207713-43-4-761
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error