1887

Abstract

Hybridization experiments were carried out between DNAs from more than 70 strains of spp. and related taxa and either H-labeled 23S rRNAs from reference strains belonging to , and , an unnamed sp. strain, and a strain or H or C-labeled 23S rRNAs from 13 gram-negative reference strains. An immunotyping analysis of 130 antigens versus 34 antisera of campylobacters and related taxa was also performed. We found that all of the named campylobacters and related taxa belong to the same phylogenetic group, which we name rRNA superfamily VI and which is far removed from the gram-negative bacteria allocated to the five rRNA superfamilies sensu De Ley. There is a high degree of heterogeneity within this rRNA superfamily. Organisms belonging to rRNA superfamily VI should be reclassified in several genera. We propose that the emended genus should be limited to , and “ and are transferred to the genus as comb. nov. and rectus comb. nov., respectively. and are generically misnamed and are closely related to the genus , and an unnamed sp. strain constitute a new genus, for which the name is proposed; this genus contains two species, comb. nov. (type species) and comb. nov. so far is the only species of the genus . The genus is also emended; and are included in this genus as comb. nov. and comb. nov., respectively. The genus “” with “” as the only species, is closely related to the genus . The free-living, sulfur-reducing campylobacters do not belong to any of these genera; they probably constitute a distinct genus within rRNA superfamily VI.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-41-1-88
1991-01-01
2022-12-03
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/41/1/ijsem-41-1-88.html?itemId=/content/journal/ijsem/10.1099/00207713-41-1-88&mimeType=html&fmt=ahah

References

  1. Archer J. R., Romero S., Ritchie A. E., Hamacher M. E., Steiner B. M., Bryner J. H., Schell R. F. 1988; Characterization of an unclassified microaerophilic bacterium associated with gastroenteritis. J. Clin. Microbiol. 26:101–105
    [Google Scholar]
  2. Béji A., Mégraud F., Vincent P., Gavini F., Izard D., Leclerc H. 1988; GC content of DNA of Campylobacter pylori and other species belonging or related to the genus Campylobacter. Ann. Inst. Pasteur/Microbiol. (Paris) 139:527–534
    [Google Scholar]
  3. Bolton F. J., Coates D., Hutchinson D. N, Godfree A. F. 1987; A study of thermophilic Campylobacters in a river system. J. Appl. Bacterio). 62:167–176
    [Google Scholar]
  4. Bolton F. J., Holt A. V., Hutchinson D. N. 1985; Urease positive thermophilic Campylobacters. Lancet i:1217–1218
    [Google Scholar]
  5. Bryner J. H., Ritchie A. E., Pollet L., Kirkbride C. A., Collins J. E. 1987; Experimental infection and abortion of pregnant guinea pigs with a unique Spirillum-like bacterium isolated from aborted ovine fetuses. Am. J. Vet. Res. 48:91–95
    [Google Scholar]
  6. Collins M. D., Jones D. 1981; Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol. Rev. 45:316–354
    [Google Scholar]
  7. Collins M. D., Widdel F. 1986; Respiratory quinones of sulphate-reducing and sulphur reducing bacteria: a systematic investigation. Syst. Appl. Microbiol. 8:8–18
    [Google Scholar]
  8. De Ley J. 1970; Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. J. Bacteriol. 101:738–754
    [Google Scholar]
  9. De Ley J. 1978; Modern molecular methods in bacterial taxonomy: evaluation, application, prospects. 347–357Proceedings of the 4th International Conference of Plant Pathogenic Bacteria, Angers, vol. 1Gibert-Clarey, Tours, France
    [Google Scholar]
  10. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur. J. Biochem. 12:133–142
    [Google Scholar]
  11. De Ley J., De Smedt J. 1975; Improvements on the membrane filter method for DNA:rRNA hybridization. Antonie van Leeuwenhoek J. Microbiol. Serol. 41:287–307
    [Google Scholar]
  12. De Ley J., Segers P., Gillis M. 1978; Intra- and intergeneric similarities of Chromobacterium and Janthinobacterium ribosomal ribonucleic acid cistrons. Int. J. Syst. Bacteriol. 28:154–168
    [Google Scholar]
  13. De Vos P., De Ley J. 1983; Intra- and intergeneric similarities of Pseudomonas and Xanthomonas ribosomal ribonucleic acid cistrons. Int. J. Syst. Bacteriol. 33:487–509
    [Google Scholar]
  14. De Vos P., Kersters K., Falsen E., Pot B., Gillis M., Segers P., De Ley J. 1985; Comamonas Davis and Park 1962 gen. nov., nom. rev. emend., and Comamonas terrigena Hugh 1962 sp. nov., nom. rev. Int. J. Syst. Bacteriol. 35:443–453
    [Google Scholar]
  15. Falsen F. 1983 Immunodiffusion as an aid in routine identification of uncommon aerobic Gram negative bacteria. 477–483 Leclerc H.ed Gram negative bacteria of medical and public health importance: taxonomy, identification, applications Les éditions de l’Institut National de la Santé et de la Recherche Médicale; Paris:
    [Google Scholar]
  16. Falsen E., Nehls L., Börjesson A. 1986; Abstr. XIV Int. Cong. Microbiol., Manchester, United Kingdom, O.B8–4. 8
  17. Falsen E., Nehls L., Börjesson A. 1986; Abstr. XIV Int. Cong. Microbiol., Manchester, United Kingdom, P.B8–8. 60
  18. Fennell C. L., Totten P. A., Quinn T. C., Patton D. L., Holmes K. K., Stamm W. E. 1984; Characterization of Campylobacter-like organisms isolated from homosexual men. J. Infect. Dis. 149:58–66
    [Google Scholar]
  19. Firehammer B. D. 1965; The isolation of vibrios from ovine feces. Cornell Vet. 55:482–494
    [Google Scholar]
  20. Flores B. M., Fennell C. L., Holmes K. K., Stamm W. E. 1985; In vitro susceptibilities of Campylobacter-like organisms to twenty antimicrobial agents. Antimicrob. Agents Chemother. 28:188–191
    [Google Scholar]
  21. Fox J. G., Taylor N. S., Edmonds P., Brenner D. J. 1988; Campylobacter pylori subsp. mustelae subsp. nov. isolated from the gastric mucosa of ferrets (Mustela putorius furo), and an emended description of Campylobacter pylori. Int. J. Syst. Bacteriol. 38:367–370
    [Google Scholar]
  22. Goodwin C. S., Armstrong J. A., Chilvers T., Peters M., Collins M. D., Sly L., McConnell W., Harper W. E. S. 1989; Transfer of Campylobacter pylori and Campylobacter mustelae to Helicobacter gen. nov. as Campylobacter pylori comb. nov. and Helicobacter mustelae comb, nov., respectively. Int. J. Syst. Bacteriol. 39:397–405
    [Google Scholar]
  23. Goodwin C. S., McConnell W., McCullough R. K., McCullough C., Hill R., Bronsdon M. A., Kasper G. 1989; Cellular fatty acid composition of Campylobacter pylori from primates and ferrets compared with those of other Campylobacters. J. Clin. Microbiol. 27:938–943
    [Google Scholar]
  24. Goossens H., Pot B., Vlaes L., Van den Borre C., Van den Abbeele R., Van Naelten C., Levy J., Cogniau H., Marbehant P., Verhoef J., Kersters K., Butzler J.-P., Vandamme P. 1990; Characterization and description of “Campylobacter upsaliensis” isolated from human feces. J. Clin. Microbiol. 28:1039–1046
    [Google Scholar]
  25. Han Y.-H., Smibert R. M., Krieg N. R. 1989; Occurrence of sheathed flagella in Campylobacter cinaedi and Campylobacter fennelliae. Int. J. Syst. Bacteriol. 39:488–490
    [Google Scholar]
  26. Holdeman L. V., Kelley R. W., Moore W. E. C. 1984 Genus I. Bacteroides Castellani and Chalmers 1919, 959AL. 604–631 Krieg N. R., Holt J. G.ed Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  27. Kasper G., Dickgiesser N. 1985; Isolation from gastric epithelium of Campylobacter-like bacteria that are distinct from “Campylobacter pyloridis.”. Lancet i:111–112
    [Google Scholar]
  28. Kirkbride C. A., Gates C. E., Collins J. E. 1986; Abortion in sheep caused by a nonclassified, anaerobic, flagellated bacterium. Am. J. Vet. Res. 47:259–262
    [Google Scholar]
  29. Laanbroek H. J., Kingma W., Veldkamp H. 1977; Isolation of an aspartate-fermenting, free-living Campylobacter species. FEMS Lett. 1:99–102
    [Google Scholar]
  30. Lambert M. A., Patton C. M., Barrett T. J., Moss C. W. 1987; Differentiation of Campylobacter and Campylobacter-like organisms by cellular fatty acid composition. J. Clin. Microbiol. 25:706–713
    [Google Scholar]
  31. Lau P. P., Debrunner-Vossbrinck B., Dunn B., Miotto K., Donell M. T., Rollins D. M., Pillidge C. J., Hespell R. B., Colwell R. R., Sogin M. L., Fox G. E. 1987; Phylogenetic diversity and position of the genus Campylobacter. Syst. Appl. Microbiol. 9:231–238
    [Google Scholar]
  32. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol. 3:208–218
    [Google Scholar]
  33. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol. 5:109–118
    [Google Scholar]
  34. McClung C. R., Patriquin D. G., Davis R. E. 1983; Campylobacter nitrofigilis sp. nov., a nitrogen-fixing bacterium associated with roots of Spartina alterniflora Loisel. Int. J. Syst. Bacteriol. 33:605–612
    [Google Scholar]
  35. Miller L. T. 1982; A single derivatization method for bacterial fatty acid methyl esters including hydroxy acids. J. Clin. Microbiol. 16:584–586
    [Google Scholar]
  36. Mills C. K., Gherna R. L. 1987; Hydrolysis of indoxyl acetate by Campylobacter species. J. Clin. Microbiol. 25:1560–1561
    [Google Scholar]
  37. Moss C. W., Kai A., Lambert M. A., Patton C. 1984; Isoprenoid quinone content and cellular fatty acid composition of Campylobacter species. J. Clin. Microbiol. 19:772–776
    [Google Scholar]
  38. Moss C. W., Lambert-Fair M. A., Nicholson M. A., Guerrant G. O. 1990; Isoprenoid quinones of Campylobacter cryaerophila, C. cinaedi, C. fennelliae, C. hyointestinalis, C. pylori, and “C. upsaliensis.”. J. Clin. Microbiol. 28:395–397
    [Google Scholar]
  39. Neill S. D., Campbell J. N., O’Brien J. J., Weatherup S. T. C., Ellis W. A. 1985; Taxonomic postion of Campylobacter cryaerophila sp. nov. Int. J. Syst. Bacteriol. 35:342–356
    [Google Scholar]
  40. Owen R. J., Costas M., Sloss L. L., Bolton F. J. 1988; Numerical analysis of electrophoretic protein patterns of Campylobacter laridis and allied thermophilic Campylobacters from the natural environment. J. Appl. Bacteriol. 65:69–78
    [Google Scholar]
  41. Paster B. J., Dewhirst F. E. 1988; Phylogeny of Campylobacters, wolinellas, Bacteroides gracilis, and Bacteroides ureolyticus by 16S ribosomal ribonucleic acid sequencing. Int. J. Syst. Bacteriol. 38:56–62
    [Google Scholar]
  42. Penner J. L. 1988; The genus Campylobacter: a decade of progress. Clin. Microbiol. Rev. 1:157–172
    [Google Scholar]
  43. Pfennig N., Biebl H. 1981 The dissimilatory sulfurreducing bacteria. 941–947 Starr M. P., Stolp H., Triiper H. G., Balows A., Schlegel H. G.ed The prokaryotes 1 Springer-Verlag KG; Berlin:
    [Google Scholar]
  44. Romaniuk P. J., Zoltowska B., Trust T. J., Lane D. J., Olsen G. J., Pace N. R., Stahl D. A. 1987; Campylobacter pylori, the spiral bacterium associated with human gastritis, is not a true Campylobacter sp. J. Bacteriol. 169:2137–2141
    [Google Scholar]
  45. Roop R. M. II, Smibert R. M., Johnson J. L., Krieg N. R. 1985; DNA homology studies of the catalase-negative Campylobacters and “Campylobacter fecalis,” an emended description of Campylobacter sputorum, and proposal of the neotype strain of Campylobacter sputorum. Can J. Microbiol. 31:823–831
    [Google Scholar]
  46. Roop R. M. II, Smibert R. M., Johnson J. L., Krieg N. R. 1985; Campylobacter mucosalis (Lawson, Leaver, Pettigrew, and Rowland 1981) comb, nov.: emended description. Int. J. Syst. Bacteriol. 35:189–192
    [Google Scholar]
  47. Rosssau R., Kersters K., Falsen E., Jantzen E., Segers P., Union A., Nehls L., De Ley J. 1987; Oligella, a new genus including Oligella urethralis comb. nov. (formerly Moraxella urethralis) and Oligella ureolytica sp. nov. (formerly CDC group IVe): relationship to Taylorella equigenitalis and related taxa. Int. J. Syst. Bacteriol. 37:198–210
    [Google Scholar]
  48. Rossau R., Vandenbussche G., Thielemans S., Segers P., Grosch H., Göthe E., Mannheim W., De Ley J. 1989; Ribosomal ribonucleic acid cistron similarities and deoxyribonucleic acid homologies of Neisseria, Kingella, Eikenella, Simonsiella, Alysiella, and Centers for Disease Control groups EF-4 and M-5 in the emended family Neisseriaceae. Int. J. Syst. Bacteriol. 39:185–198
    [Google Scholar]
  49. Sandstedt K., Ursing J., Walder M. 1983; Thermotolerant Campylobacter with no or weak catalase activity isolated from dogs. Curr. Microbiol. 8:209–213
    [Google Scholar]
  50. Smibert R. M. 1984 Genus Campylobacter Sebald and Véron 1963, 907AL. 111–118 Krieg N. R., Holt J. G.ed Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  51. Sokal R. R., Sneath P. H. A. 1963 Principles of numerical taxonomy. W. H. Freeman & Co.; San Francisco:
    [Google Scholar]
  52. Steele T. W., Lanser J. A., Sangster N. 1985; Nitratenegative Campylobacter-like organisms. Lancet i:394
    [Google Scholar]
  53. Steele T. W., Owen R. J. 1988; Campylobacter jejuni subsp. doylei subsp. nov., a subspecies of nitrate-negative Campylobacters isolated in Central and South Australia. J. Clin. Microbiol. 24:562–565
    [Google Scholar]
  54. Swings J., De Vos P., Van den Mooter M., De Ley J. 1983; Transfer of Pseudomonas maltophilia Hugh 1981 to the genus Xanthomonas as Xanthomonas maltophilia (Hugh 1981) comb, nov. Int. J. Syst. Bacteriol. 33:409–413
    [Google Scholar]
  55. Tamaoka J., Ha D.-M., Komagata K. 1987; Reclassification of Pseudomonas acidovorans den Dooren de Jong 1926 and Pseudomonas testosteroni Marcus and Talalay 1956 as Comamonas acidovorans comb. nov. and Comamonas testosteroni comb, nov., with an emended description of the genus Comamonas. Int. J. Syst. Bacteriol. 37:52–59
    [Google Scholar]
  56. Tanner A. C. R., Badger S., Lai C.-H., Listgarten M. A., Visconti R. A., Socransky S. S. 1981; Wolinella gen. nov., Wolinella succinogenes (Vibrio succinogenes Wolin et al.) comb, nov., and description of Bacteroides gracilis sp. nov., Wolinella recta sp. nov., Campylobacter concisus sp. nov., and Eikenella corrodens from humans with periodontal disease. Int. J. Syst. Bacteriol. 31:432–445
    [Google Scholar]
  57. Tanner A. C. R., Listgarten M. A., Ebersole J. L. 1984; Wolinella curva sp. nov.: “Vibrio succinogenes” of human origin. Int. J. Syst. Bacteriol. 34:275–282
    [Google Scholar]
  58. Tanner A. C. R., Socransky S. S. 1984 Genus Wolinella Tanner, Badger, Listgarten, Visconti and Socransky 1981, 439VP. 646–650 Krieg N. R., Holt J. G.ed Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  59. Tanner A. C. R., Visconti R. A., Holdeman L. V., Sundqvist G., Socransky S. S. 1982; Similarity of Wolinella recta strains isolated from periodontal pockets and root canals. J. Endodontol. 8:294–300
    [Google Scholar]
  60. Thompson L. M. III, Smibert R. M., Johnson J. L., Krieg N. R. 1988; Phylogenetic study of the genus Campylobacter. Int. J. Syst. Bacteriol. 38:190–200
    [Google Scholar]
  61. Totten P. A., Fennell C. L., Tenover F. C., Wezenberg J. M., Perine P. L., Stamm W. E., Holmes K. K. 1985; Campylobacter cinaedi (sp. nov.) and Campylobacter fennelliae (sp. nov.): two new Campylobacter species associated with enteric disease in homosexual men. J. Infect. Dis. 151:131–139
    [Google Scholar]
  62. Vandamme P., De Ley J. 1987 Phylogenetic relationships in and of the genus Campylobacter,. 47–48 Kaijser B., Falsen E.ed Campylobacter IV University of Göteborg; Göteborg, Sweden:
    [Google Scholar]
  63. Vandamme P., Falsen E., Pot B., Hoste B., Kersters K., De Ley J. 1989; Identification of EF group 22 Campylobacters from gastroenteritis cases as Campylobacter concisus. J. Clin. Microbiol. 27:1775–1781
    [Google Scholar]
  64. von Graevenitz A. 1990; Revised nomenclature of Campylobacter laridis, Enterobacter intermedium, and “Flavobacterium branchiophila.”. Int. J. Syst. Bacteriol. 40:211
    [Google Scholar]
  65. Willems A., Busse J., Goor M., Pot B., Falsen E., Jantzen E., Hoste B., Gillis M., Kersters K., Auling G., De Ley J. 1989; Hydrogenophaga, a new genus of hydrogen-oxidizing bacteria that includes Hydrogenophaga flava comb. nov. (formerly Pseudomonas flava), Hydrogenophaga palleronii comb. nov. (formerly Pseudomonas palleronii), Hydrogenophaga pseudoflava (formerly Pseudomonas pseudoflava and “Pseudomonas car boxy do flava”), and Hydrogenophaga taeniospiralis (formerly Pseudomonas taeniospiralis). Int. J. Syst. Bacteriol. 39:319–333
    [Google Scholar]
  66. Woese C. R. 1987; Bacterial evolution. Microbiol. Rev. 51:221–271
    [Google Scholar]
  67. Wolfe R. S., Pfennig N. 1977; Production of sulfur by Spirillum 5175 and syntrophism with Chlorobium. Appl. Environ. Microbiol. 33:427–433
    [Google Scholar]
  68. Wolin M. J., Wolin E. A., Jacobs N. J. 1961; Cytochrome-producing anaerobic vibrio, Vibrio succinogenes, sp. n. J. Bacteriol. 81:911–917
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-41-1-88
Loading
/content/journal/ijsem/10.1099/00207713-41-1-88
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error