1887

Abstract

The taxonomic relationships among , and species, , and were investigated by performing DNA-rRNA hybridization experiments, by determining DNA base compositions, and by performing protein gel electrophoresis experiments. These taxa have relatively high guanine-plus-cytosine contents (67.8 to 72.5 mol%) and form a separate group within rRNA superfamily III. and “” form two separate rRNA branches, which are linked at a level of 74.8 ± 0.7°C [, temperature at which 50% of an DNA-rRNA hybrid is denatured]. Also situated at this level and therefore equidistantly related to and “” are , and is located on the “” rRNA branch but produces a protein pattern which is different from that of “” All of the other taxa which we investigated also have unique protein patterns. Since is only very distantly related to the type species of the genus ) and to and because it is clearly different from its nearest phylogenetic neighbors, we propose to rename this species as gen. nov., comb. nov. The type strain remains strain NCIB 8290 (= LMG 4311).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-41-1-65
1991-01-01
2024-05-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/41/1/ijsem-41-1-65.html?itemId=/content/journal/ijsem/10.1099/00207713-41-1-65&mimeType=html&fmt=ahah

References

  1. Adams L. F., Ghiorse W. C. 1986; Physiology and ultrastructure of Leptothrix discophora SS-1. Arch. Microbiol 145:126–135
    [Google Scholar]
  2. Barraquio W. L., Padre B. C. Jr., Watanabe I., Knowles R. 1986; Nitrogen fixation by Pseudomonas saccharophila Doudoroff ATCC 15946. J. Gen. Microbiol. 132:237–241
    [Google Scholar]
  3. Biebl H., Drews G. 1969; Das in-vivo-Spektrum als taxonomisches Merkmal bei Untersuchungen zur Verbreitung von Athiorhodaceae. Zentralbl. BakterioL Parasitenkd. Infektionskr. Hyg. Abt. 2 123:425–452
    [Google Scholar]
  4. Claus D., Schaab-Engels C.ed 1977 Catalogue of strains. Deutsche Sammlung von Mikroorganismen. , 2nd. Gesellschaft fur Strahlenund Umweltforschung mbH; Munich:
    [Google Scholar]
  5. De Ley J. 1970; Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. J. Bacteriol. 101:738–754
    [Google Scholar]
  6. De Ley J. 1978 Modem molecular methods in bacterial taxonomy: evaluation, application, prospects. 347–357Proceedings of the 4th International Conference of Plant Pathogenic Bacteria 1 Gibert-Clarey; Tours, France:
    [Google Scholar]
  7. De Ley J., De Smedt J. 1975; Improvements of the membrane filter method for DNA:rRNA hybridization. Antonie van Leeuwenhoek J. Microbiol. Serol. 41:287–307
    [Google Scholar]
  8. De Ley J., Segers P., Gillis M. 1978; Intra- and intergeneric similarities of Chromobacterium and Janthinobacterium ribosomal ribonucleic acid cistrons. Int. J. Syst. Bacteriol. 28:154–168
    [Google Scholar]
  9. De Ley J., Segers P., Kersters K., Mannheim W., Lievens A. 1986; Intra- and intergeneric similarities of the Bordetella ribosomal ribonucleic acid cistrons: proposal for a new family, Alcaligenaceae. Int. J. Syst. Bacteriol. 36:405–414
    [Google Scholar]
  10. De Ley J., Van Muylem J. 1963; Some applications of deoxyribonucleic acid base composition in bacterial taxonomy. Antonie van Leeuwenhoek J. Microbiol. Serol. 29:344–358
    [Google Scholar]
  11. De Vos P., De Ley J. 1983; Intra- and intergeneric similarities of Pseudomonas and Xanthomonas ribosomal ribonucleic acid cistrons. Int. J. Syst. Bacteriol. 33:487–509
    [Google Scholar]
  12. De Vos P., Kersters K., Falsen E., Pot B., Gillis M., Segers P., De Ley J. 1985; Comamonas Davis and Park 1962 gen. nov., nom. rev. emend., and Comamonas terrigena Hugh 1962 sp. nov., nom. rev. Int. J. Syst. Bacteriol. 35:443–453
    [Google Scholar]
  13. Emerson D. Personal communication
  14. Gillis M. Unpublished data
  15. Gillis M., Dejonghe J., Smet A., Onghenae G., De Ley J. 1982 Abstr. Fourth Int. Symp. Photosynthetic ProkaryotesA16
    [Google Scholar]
  16. Harfoot C. G., Janssen P. H. 1985; Growth of Rhodocyclus purpureus on short-chain fatty acids. FEMS Microbiol. Lett. 29:177–179
    [Google Scholar]
  17. Imhoff J. F., Triiper H. G. 1989 Purple nonsulfur bacteria (Rhodospirillaceae Pfennig and Triiper 1971, 17AL). 1658–1682 Staley J. T., Bryant M. P., Pfennig N., Holt J. G.ed Bergey’s manual of systematic bacteriology 3 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  18. Imhoff J. F., Trüper H. G. 1989 Genus RhodocyclusPfennig 1978, 285AL. 1678–1682 Staley J. T., Bryant M. P., Pfennig N., Holt J. G.ed Bergey’s manual of systematic bacteriology 3 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  19. Imhoff J. F., Trüper H. G., Pfennig N. 1984; Rearrangement of the species and genera of the phototrophic “purple nonsulfur bacteria.”. Int. J. Syst. Bacteriol. 34:340–343
    [Google Scholar]
  20. Kersters K., De Ley J. 1984 Genus Alcaligenes Castellani and Chalmers 1919, 936AL. 361–373 Krieg N. R., Holt J. G.ed Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  21. Kiredjian M., Holmes B., Kersters K., Guilvout I., De Ley J. 1986; Alcaligenes piechaudii, a new species from human clinical specimens and the environment. Int. J. Syst. Bacteriol. 36:282–287
    [Google Scholar]
  22. Kocur M., Pácová Z., Sovadina M.ed 1982 Catalogue of cultures. Czechoslovak Collection of Microorganisms. , 4th. J. E. Purkyne University; Brno, Czechoslovakia:
    [Google Scholar]
  23. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680–685
    [Google Scholar]
  24. Lane D. J., Stahl D. A., Olsen G. J., Heller D. J., Pace N. R. 1985; Phylogenetic analysis of the genera Thiobacillus and Thiomicrospira by 5S rRNA sequences. J. Bacteriol. 163:75–81
    [Google Scholar]
  25. Madigan M., Cox S. S., Stegeman R. A. 1984; Nitrogen fixation and nitrogenase activities in members of the Rhodospirillaceae. J. Bacteriol. 157:73–78
    [Google Scholar]
  26. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J. Mol. Biol. 3:208–218
    [Google Scholar]
  27. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol. 5:109–118
    [Google Scholar]
  28. Molisch H. 1907 Die Purpurbakterien nach neuen Untersuchungen. 1–95 Gustav Fischer Verlag; Jena, German Democratic Republic:
    [Google Scholar]
  29. Mulder E. G. 1989 Genus Leptothrix Kiitzing 1843, 198AL. 1998–2003 Staley J. T., Bryant M. P., Pfennig N., Holt J. G.ed Bergey’s manual of systematic bacteriology 3 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  30. Mulder E. G. 1989 Genus Sphaerotilus Kiitzing 1833, 386AL. 1994–1998 Staley J. T., Bryant M. P., Pfennig N., Holt J. G.ed Bergey’s manual of systematic bacteriology 3 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  31. Mulder E. G., Deinema M. H. 1981 The sheathed bacteria. 425–440 Starr M. P., Stolp H., Triiper H. G., Balows A., Schlegel H. G.ed The prokaryotes SpringerVerlag KG; Berlin:
    [Google Scholar]
  32. Mulder E. G., van Veen W. L. 1963; Investigations on the Sphaerotilus-Leptothrix group. Antonie van Leeuwenhoek J. Microbiol. Serol. 29:121–153
    [Google Scholar]
  33. Mulder E. G., van Veen W. L. 1974 Genus Sphaerotilus Kützing 1833. 128–129 Buchanan R. E., Gibbons N. E.ed Bergey’s manual of determinative bacteriology, 8th. The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  34. Palleroni N. J. 1980; Isolation and properties of a new hydrogen bacterium related to Pseudomonas saccharophila. J. Gen. Microbiol. 117:155–161
    [Google Scholar]
  35. Palleroni N. J. 1984 Pseudomonas Migula 1894, 237AL. 141–199 Krieg N. R., Holt J. G.ed Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  36. Pfennig N. 1978; Rhodocyclus purpureus gen. nov. and sp. nov., a ring-shaped, vitamin B12-requiring member of the family Rhodospirillaceae. Int. J. Syst. Bacteriol. 28:283–288
    [Google Scholar]
  37. Pfennig N., Trüper H. G. 1974 The phototrophic bacteria. 24–64 Buchanan R. E., Gibbons N. E.ed Bergey’s manual of determinative bacteriology, 8th. The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  38. Pfennig N., Triiper H. G. 1983; Taxonomy of phototrophic green and purple bacteria: a review. Ann. Microbiol. Inst. Pasteur 134B:9–20
    [Google Scholar]
  39. Rossau R., Kersters K., Falsen E., Jantzen E., Segers P., Union A., Nehls L., De Ley J. 1987; Oligella, a new genus including Oligella urethralis comb. nov. (formerly Moraxella urethralis) and Oligella ureolytica sp. nov. (formerly CDC group IVe): relationship to Taylorella equigenitalis and related taxa. Int. J. Syst. Bacteriol. 37:198–210
    [Google Scholar]
  40. Rossau R., Vandenbussche G., Thielemans S., Segers P., Grosch H., Göthe E., Mannheim W., De Ley J. 1989; Ribosomal ribonucleic acid cistron similarities and deoxyribonucleic acid homologies of Neisseria, Kingella, Eikenella, Simonsiella, Alysiella, and Centers for Disease Control groups EF-4 and M-5 in the emended family Neisseriaceae. Int. J. Syst. Bacteriol. 39:185–198
    [Google Scholar]
  41. Stackebrandt E., Murray R. G. E., Trüper H. G. 1988; Proteobacteria classis nov., a name for the phylogenetic taxon that includes the “purple bacteria and their relatives.”. Int. J. Syst. Bacteriol. 38:321–325
    [Google Scholar]
  42. Stahl D. A., Lane D. J., Olsen G. J., Heller D. J., Schmidt T. M., Pace N. R. 1987; Phylogenetic analysis of certain sulfide-oxidizing and related morphologically conspicuous bacteria by 5S ribosomal ribonucleic acid sequences. Int. J. Syst. Bacteriol. 37:116–122
    [Google Scholar]
  43. Uffen R. L. 1983; Metabolism of carbon monoxide by Rhodopseudomonas gelatinosa: cell growth and properties of the oxidation system. J. Bacteriol. 155:956–965
    [Google Scholar]
  44. Van Landschoot A., De Ley J. 1983; Intra- and intergeneric similarities of the rRNA cistrons of Alteromonas, Marinomonas(gen. nov.) and some other Gram-negative bacteria. J. Gen. Microbiol. 129:3057–3074
    [Google Scholar]
  45. van Veen W. L., Mulder E. G., Deinema M. H. 1978; The Sphaerotilus-Leptothrix group of bacteria. Microbiol. Rev 42:329–356
    [Google Scholar]
  46. Weckesser J., Drews G., Tauschel H.-D. 1969; Zur Feinstruktur und Taxonomie von Rhodopseudomonas gelatinosa. Arch. Mikrobiol. 65:346–358
    [Google Scholar]
  47. Weckesser J., Mayer H., Drews G., Fromme I. 1975; Lipophilic O-antigens containing d-glycero-d-mannoheptose as the sole neutral sugar in Rhodopseudomonas gelatinosa. J. Bacteriol. 123:449–455
    [Google Scholar]
  48. Weckesser J., Mayer H., Metz E., Biebl H. 1983; Lipopolysaccharide of Rhodocyclus purpureus: taxonomic implication. Int. J. Syst. Bacteriol. 33:53–56
    [Google Scholar]
  49. Willems A., Busse J., Goor M., Pot B., Falsen E., Jantzen E., Hoste B., Gillis M., Kersters K., Auling G., De Ley J. 1989; Hydrogenophaga, a new genus of hydrogen-oxidizing bacteria that includes Hydrogenophaga flava comb. nov. (formerly Pseudomonas flava), Hydrogenophaga palleronii (formerly Pseudomonas palleronii), Hydrogenophaga pseudoflava (formerly Pseudomonas pseudoflava and “Pseudomonas carboxydoflava”), and Hydrogenophaga taeniospiralis (formerly Pseudomonas taeniospiralis). Int. J. Syst. Bacteriol. 39:319–333
    [Google Scholar]
  50. Willems A., Gillis M., Kersters K., Van den Broecke L., De Ley J. 1987; Transfer of Xanthomonas ampelina Panagopoulos 1969 to a new genus, Xylophilus gen. nov., as Xylophilus ampelinus (Panagopoulos 1969) comb. nov. Int. J. Syst. Bacteriol. 37:422–430
    [Google Scholar]
  51. Woese C. R., Stackebrandt E., Weisburg W. G., Paster B. J., Madigan M. T., Fowler V. J., Hahn C. M., Blanz P., Gupta R., Nealson K. H., Fox G. E. 1984; The phylogeny of purple bacteria: the alpha subdivision. Syst. Appl. Microbiol. 5:315–326
    [Google Scholar]
  52. Woese C. R., Weisburg W. G., Paster B. J., Hahn C. M., Tanner R. S., Krieg N. R., Koops H.-P., Harms H., Stackebrandt E. 1984; The phylogeny of purple bacteria: the beta subdivision. Syst. Appl. Microbiol. 5:327–336
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-41-1-65
Loading
/content/journal/ijsem/10.1099/00207713-41-1-65
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error