1887

Abstract

A practical and effective method for the extraction of mitochondrial DNA from species was developed. Zymolyase was used to induce yeast protoplasts, and mitochondrial DNA was extracted from DNase I-treated mitochondrial preparations. Restriction endonuclease analyses of mitochondrial DNAs from 19 isolates representing seven species of , and ) and revealed different cleavage patterns that appeared to be specific for the species. Few common restriction fragments were evident. The genome sizes of the mitochondrial DNAs ranged from 26.4 to 51.4 kilobase pairs, and the guanine-plus-cytosine contents ranged from 20.7 to 36.8 mol%. There was no correlation between the base compositions of nuclear and mitochondrial DNAs. Eight isolates of , including the type culture, and an ascosporogenous strain of , which was once proposed as the teleomorph of , had similar mitochondrial DNA molecular sizes (30.2 and 28.8 kilobase pairs); however, restriction endonuclease patterns of these organisms were distinct. These data provide additional support for discrimination of these two species. The results of our experiments demonstrate that mitochondrial DNA analyses may provide useful criteria for the differentiation of yeast species.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-41-1-6
1991-01-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/41/1/ijsem-41-1-6.html?itemId=/content/journal/ijsem/10.1099/00207713-41-1-6&mimeType=html&fmt=ahah

References

  1. Ahearn D. G., Schlitzer R. L. 1984 Key to yeasts pathogenic for man and animal. 998–1005 Kreger-van Rij N. J. W.ed The yeasts, a taxonomic study Elsevier Science Publishers B. V.; Amsterdam:
    [Google Scholar]
  2. Ashford B. K. 1928; Certain conditions of the gastro-intestinal tract in Porto Rico and their relation to tropical sprue. Am. J. Trop. Med. 8:507–538
    [Google Scholar]
  3. Bak A. L., Christiansen C., Stenderup A. 1969; Unusual physical properties of mitochondrial DNA in yeast. Nature (London) 224:270–271
    [Google Scholar]
  4. Beech F. W., Carr J. G., Codner R. C. 1955; A multipoint inoculator for plating bacteria or yeasts. J. Gen. Microbiol. 13:408–410
    [Google Scholar]
  5. Camougrand N., Mila B., Velours G., Lazowska J., Guérin M. 1988; Discrimination between different groups of Candida parapsilosis by mitochondrial DNA restriction analysis. Curr. Genet. 13:445–449
    [Google Scholar]
  6. Castora F. J., Arnheim N., Simpson M. V. 1980; Mitochondrial DNA polymorphism: evidence that variants detected by restriction enzymes differ in nucleotide sequence rather than in methylation. Proc. Natl. Acad. Sci. USA 77:6415–6419
    [Google Scholar]
  7. Clark-Walker G. D., McArthur C. R., Daley D. J. 1981; Does mitochondrial DNA length influence the frequency of spontaneous petite mutants in yeasts?. Curr. Genet. 4:7–12
    [Google Scholar]
  8. Clark-Walker G. D., McArthur C. R., Sriprakash K. S. 1981; Partial duplication of the large rRNA sequence in an inverted repeat in circular mitochondrial DNA from Kloeckera africana: implications for mechanisms of the petite mutation. J. Mol. Biol. 147:399–415
    [Google Scholar]
  9. Daniel A. E. 1982 M.S. thesis Georgia State University; Atlanta:
  10. Fox B. C., Mobley H. L. T., Wade J. C. 1989; The use of a DNA probe for epidemiological studies of candidiasis in immunocompromised hosts. J. Infect. Dis. 159:488–494
    [Google Scholar]
  11. Hamajima K., Nishikawa A., Shinoda T., Fukazawa Y. 1987; Deoxyribonucleic acid base composition and its homology between two forms of Candida parapsilosis and Lodderomyces elongisporus. J. Gen. Appl. Microbiol. 33:299–302
    [Google Scholar]
  12. Hoeben P., Clark-Walker G. D. 1986; An approach to yeast classification by mapping mitochondrial DNA from Dekkera/Brettanomvces and Eeniella genera. Curr. Genet. 10:371–379
    [Google Scholar]
  13. Holzschu D. L., Presley H. L., Miranda M., Phaff H. J. 1979; Identification of Candida lusitaniae as an opportunistic yeast in humans. J. Clin. Microbiol. 10:202–205
    [Google Scholar]
  14. Kalf G. F., Gréce M. A. 1967; The isolation of DNA from mitochondria. Methods Enzymol. 12A:533–538
    [Google Scholar]
  15. Kováč L., Lazowska J., Slonimski P. P. 1984; A yeast with linear molecules of mitochondrial DNA. Mol. Gen. Genet 197:420–424
    [Google Scholar]
  16. Kreger-van Rij N. J. W. 1984 Classification of the imperfect yeasts. 35–41 Kreger-van Rij N. J. W.ed The yeasts, a taxonomic study Elsevier Science Publishers B. V.; Amsterdam:
    [Google Scholar]
  17. Kreger-van Rij N. J. W. 1987 Classification of yeasts. 5–61 Rose A. H., Harrison J. S.ed The yeasts, vol. 1. Biology of yeasts, 2nd. Academic Press, Inc. (London), Ltd.; London:
    [Google Scholar]
  18. Kunze G., Bode R., Birnbaum D. 1986; Physical mapping and genome organization of mitochondrial DNA from Candida maltosa. Curr. Genet. 10:527–530
    [Google Scholar]
  19. Kurtzman C. P., Phaff H. J., Meyer S. A. 1983 Nucleic acid relatedness among yeasts. 139–166 Spencer J. F. T., Spencer D. M., Smith A. R. W.ed Yeast genetics, fundamental and applied aspects Springer-Verlag; New York:
    [Google Scholar]
  20. Kurtzman C. P., Smiley M. J., Johnson C. J., Wickerham L. J., Fuson G. B. 1980; Two new and closely related heterothallic species, Pichia amylophila and Pichia mississippiensis: characterization by hybridization and deoxyribonucleic acid reassociation. Int. J. Syst. Bacteriol. 30:208–216
    [Google Scholar]
  21. Lerner C. W., Tapper M. L. 1984; Opportunistic infection complicating acquired immune deficiency syndrome. Medicine (Baltimore) 63:155–164
    [Google Scholar]
  22. Lodder J., Kreger-van Rij N. J. W. 1952 Genus S. Candida Berkhout. 459–594 Lodder J., Kreger-van Rij N. J. W.ed The yeasts, a taxonomic study North-Holland Publishing Co.; Amsterdam:
    [Google Scholar]
  23. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J. Mol. Biol. 3:208–218
    [Google Scholar]
  24. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from thermal denaturation temperature. J. Mol. Biol. 5:109–118
    [Google Scholar]
  25. Meyer S. A. 1979 DNA relatedness between physiologically similar strains and species of yeasts of medical and industrial importance. 13–19 Garattini S., Paglialunga S., Scrimshaw N. S.ed Single-cell protein, safety for animal and human feeding Pergamon Press; New York:
    [Google Scholar]
  26. Meyer S. A., Ahearn D. G., Yarrow D. 1984 Genus 4. Candida Berkhout. 585–844 Kreger-van Rij N. J. W.ed The yeasts, a taxonomic study Elsevier Science Publishers B. V.; Amsterdam:
    [Google Scholar]
  27. Meyer S. A., Anderson K., Brown R. E., Smith M. T., Yarrow D., Mitchell G., Ahearn D. G. 1975; Physiological and DNA characterization of Candida maltosa, a hydrocarbonutilizing yeast. Arch. Microbiol. 104:225–231
    [Google Scholar]
  28. Meyer S. A., Phaff H. J. 1969; Deoxyribonucleic acid base composition in yeasts. J. Bacteriol. 97:52–56
    [Google Scholar]
  29. Meyer S. A., Phaff H. J. 1972; DNA base composition and DNA-DNA homology studies as tools in yeast systematics. 375–387 Kocková-Kratochvilová A., Minárik E.ed Yeasts, models in science and technicsProceedings of the First Specialized International Symposium on Yeasts. Publishing House of the Slovak Academy of SciencesBratislava, Czechoslovakia
    [Google Scholar]
  30. Moritz C., Dowling T. E., Brown W. M. 1987; Evolution of animal mitochondrial DNA: relevance for population biology and systematics. Annu. Rev. Ecol. Syst. 18:269–292
    [Google Scholar]
  31. Nakase T., Komagata K., Fukazawa Y. 1979; A comparative taxonomic study on two forms of Candida parapsilosis (Ashford) Langeron et Talice. J. Gen. Appl. Microbiol. 25:375–386
    [Google Scholar]
  32. O’Connor R. M., McArthur C. R., Clark-Walker G. D. 1975; Closed-circular DNA from mitochondrial-enriched fractions of four petite-negative yeasts. Eur. J. Biochem. 53:137–144
    [Google Scholar]
  33. O’Connor R. M., McArthur C. R., Clark-Walker G. D. 1976; Respiratory deficient mutants of Torulopsis glabrata, a yeast with circular mitochondrial deoxyribonucleic acid of 6 μιη. J. Bacteriol. 126:959–968
    [Google Scholar]
  34. Olivo P. D., McManus E. J., Riggsby W. S., Jones J. M. 1987; Mitochondrial DNA polymorphism in Candida albicans. J. Infect. Dis. 156:214–215
    [Google Scholar]
  35. Phaff H. J. 1984 DNA, enzymes and cell wall. 17–24 Kreger-van Rij N. J. W.ed The yeasts, a taxonomic study Elsevier Science Publishers B. V.; Amsterdam:
    [Google Scholar]
  36. Phaff H. J., Price C. W. 1979 Strengths and weaknesses of traditional criteria in the systematics of yeasts as revealed by nuclear genome comparison. 1–12 Garattini S., Paglialunga S., Scrimshaw N. S.ed Single-cell protein, safety for animal and human feeding Pergamon Press; New York:
    [Google Scholar]
  37. Prunell A., Kopecka H., Strauss F., Bernardi G. 1977; The mitochondrial genome of wild-type yeast cells. V. Genome evolution. J. Mol. Biol. 110:17–52
    [Google Scholar]
  38. Sederoff R. R. 1987; Molecular mechanisms of mitochondrialgenome evolution in higher plants. Am. Nat 130:S30–S45
    [Google Scholar]
  39. Seidler R. J., Mandel M. 1971; Quantitative aspects of deoxyribonucleic acid renaturation: base composition, state of chromosome replication, and polynucleotide homologies. J. Bacteriol. 106:608–614
    [Google Scholar]
  40. Sor F., Fukuhara H. 1989; Analysis of chromosomal DNA patterns of the genus Kluyveromyces. Yeast 5:1–10
    [Google Scholar]
  41. Taylor J. W. 1986; Fungal evolutionary biology and mitochondrial DNA. Exp. Mycol. 10:259–269
    [Google Scholar]
  42. Uphoff R. A., Kwon-Chung K. J., Riggsby W. S. 1989; Abstr. Annu. Meet. Am. Soc. Microbiol. 1989, F-78. 471
  43. van der Walt J. P. 1966; Lodderomyces, a new genus of the Saccharomycetaceae. Antonie van Leeuwenhoek 32:1–5
    [Google Scholar]
  44. van der Walt J. P., Yarrow D. 1984 Methods for the isolation, maintenance, classification and identification of yeasts. 45–104 Kreger-van Rij N. J. W.ed The yeasts, a taxonomic study Elsevier Science Publishers B. V.; Amsterdam:
    [Google Scholar]
  45. Weng W., Wu J., Wang H., Jiao R. 1985; Studies on mitochondrial DNA from Candida tropicalis 79. Acta Genet. Sin. 27:7–13
    [Google Scholar]
  46. Wesolowski M., Algeri A., Fukuhara H. 1981; Gene organization of the mitochondrial DNA of yeasts: Kluyveromyces lactis and Saccharomycopsis lipolvtica. Curr. Genet. 3:157–162
    [Google Scholar]
  47. Wesolowski M., Fukuhara H. 1981; Linear mitochondrial deoxyribonucleic acid from the yeast Hansenula mrakii. Mol. Cell. Biol. 1:387–393
    [Google Scholar]
  48. Wills J. W., Lasker B. A., Sirotkin K., Riggsby W. S. 1984; Repetitive DNA of Candida albicans; nuclear and mitochondrial components. J. Bacteriol. 157:918–924
    [Google Scholar]
  49. Wills J. W., Troutman W. B., Riggsby W. S. 1985; Circular mitochondrial genome of Candida albicans contains a large inverted duplication. J. Bacteriol. 164:7–13
    [Google Scholar]
  50. Yamazaki M., Komagata K. 1982; Asporogenous yeasts and their supposed ascosporogenous states: an electrophoretic comparison of enzymes. J. Gen. Appl. Microbiol. 28:119–138
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-41-1-6
Loading
/content/journal/ijsem/10.1099/00207713-41-1-6
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error