1887

Abstract

Strains of a new type of slowly growing scotochromogenic mycobacterium were isolated repeatedly from sphagnum vegetation and surface water of moors in New Zealand. These strains grew at 31 and 22°C but not at 37°C and possessed catalase, acid phosphatase, and arylsulfatase activities. They did not split amides, and most of them were susceptible to antituberculotic drugs. Furthermore, they did not tolerate 0.1% NaOH and 0.2% picric acid and did not grow on compounds used as single carbon sources and single nitrogen and carbon sources. The internal similarity of the strains as determined by numerical taxonomy methods was 96.6% ± 3.09%. The whole-mycolate pattern is unique in that it has not been found previously in 23 species of slowly growing mycobacteria. Evaluation of long-reverse-transcriptase-generated stretches of the primary structure of the 16S rRNA confirmed that these organisms belong to the genus The phylogenetic position of these bacteria is unique; they are situated between slowly growing pathogenic and rapidly growing saprophytic species. The strains are not pathogenic for mice, guinea pigs, and rabbits, but they provoke a nonspecific hypersensitivity reaction to bovine tuberculin. Hence, they are considered members of a new species of nonpathogenic, slowly growing mycobacteria, for which the name is proposed. Strain NZ2 is the type strain; a culture of this strain has been deposited in the American Type Culture Collection as strain ATCC 49103.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-40-3-217
1990-07-01
2022-08-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/40/3/ijsem-40-3-217.html?itemId=/content/journal/ijsem/10.1099/00207713-40-3-217&mimeType=html&fmt=ahah

References

  1. Bönicke R. 1961; Die Bedeutung der Acylamidasen für die Identifizierung und Differenzierung der verschiedenen Arten der Gattung Mycobacterium. Jahresber. Borstel 5:7–87
    [Google Scholar]
  2. Bönicke R. 1962; Identification of mycobacteria by biochemical methods. Bull. Int. Union Tuberc. 32:13–86
    [Google Scholar]
  3. Coene M., Cocito C. 1985; A microanalytical procedure for determination of the base composition of DNA. Eur. J. Biochem. 150:475–479
    [Google Scholar]
  4. Cook B. R., Kazda J. 1988; Mycobacteria in pond water as a source of non-specific reactions to bovine tuberculin in New Zealand. N.Z. Vet. J. 136:184–188
    [Google Scholar]
  5. Daffe M., Laneelle M. A., Asselineau C., Levy-Frebault V., David H. L. 1983 Interet taxonomique des acides gras des mycobactéries. Proposition d’une methode d’analyse. Ann. Microbiol Paris: 134B241–256
    [Google Scholar]
  6. Dobson G., Minnikin D. E., Minnikin S. M., Parlett J. H., Goodfellow M., Ridell M., Magnusson M. 1985 Systematic analysis of complex mycobacterial lipids. 237–265 Goodfellow M., Minnikin D. E.ed Chemical methods in bacterial systematics Academic Press, Inc. (London), Ltd.; London:
    [Google Scholar]
  7. Fitch W. M., Margoliash E. 1967; Construction of phylogenetic trees: a method based on mutation distances as estimated from cytochrome C sequences is of general applicability. Science 155:279–284
    [Google Scholar]
  8. Gordon R. E., Smith M. M. 1953; Rapidly growing acid-fast bacteria. I. Species descriptions of Mycobacterium phlei Lehmann and Neumann and Mycobacterium smegmatis (Trevisan) Lehmann and Neumann. J. Bacteriol. 66:41–48
    [Google Scholar]
  9. Hori H., Osawa S. 1979; Evolutionary changes in 5S RNA secondary structure and phylogenetic tree of 54 5S RNA species. Proc. Natl. Acad. Sei. USA 76:381–386
    [Google Scholar]
  10. Kappler W. 1965; Zur Differenzierung von Mykobakterien mit dem Phosphatase-Test. Beitr. Klin. Tuberk. Spezif. Tuberk. Forsch. 130:223–226
    [Google Scholar]
  11. Kazda J., Cook B. R. 1987; Unusually high densities of slowly growing mycobacteria on sphagnum moss in New Zealand. Int. Peat J. 2:119–125
    [Google Scholar]
  12. Kubica G. P., Ridgon A. L. 1961; The arylsulfatase activity of acid-fast bacilli. III. Preliminary investigation of rapidly growing acid-fast bacilli. Am. Rev. Respir. Dis. 83:737–740
    [Google Scholar]
  13. Meissner G. 1959; Untersuchungen an atypischen Mykobakterien. II. Vergleichende tierexperimentelle Untersuchungen zur Frage ihrer Pathogenität und Virulenz. Beitr. Klin. Tuberk. Spezif. Tuberk. Forsch. 121:365–380
    [Google Scholar]
  14. Meissner G., Schröder K. H., Amadis G. E., Anz W., Chaparas S., Engel H. B. W., Jenkins P. A., Kappler W., Kleeberg H. H., Kubala E., Kubin M., Lauterbach D., Lind A., Magnusson M., Mikova Z., Pattyn S. R., Schaefer W. B., Stanford J. L., Tsukamura M., Wayne L. G., Willers I., Wolinsky E. 1974; A co-operative numerical analysis of nonscoto- and nonphotochromogenic slowly growing mycobacteria. J. Gen. Microbiol. 83:207–235
    [Google Scholar]
  15. Minnikin D. E., Minnikin S. M., Parlett J. H., Good fellow M. 1985; Mycolic acid pattern of some rapidly growing species of mycobacteria. Zentralbl. Bakteriol. Parasitenkd. In fektionsk. Hyg. Abt. I Orig. Reihe A 259:446–460
    [Google Scholar]
  16. Saddler G. S., O’Donnell A. G., Goodfellow M., Minnikin D. E. 1987; SIMCA pattern recognition in the analysis of streptomycete fatty acids. J. Gen. Microbiol. 133:1137–1147
    [Google Scholar]
  17. Smida J., Kazda J., Stackebrandt E. 1988; Molecular-genetic evidence for the relationship of Mycobacterium leprae to slow growing pathogenic mycobacteria. Int. J. Lepr. 56:449–545
    [Google Scholar]
  18. Sokal R. R., Sneath P. H. A. 1963 Principles of numerical taxonomy. Freeman and Co.; San Francisco:
    [Google Scholar]
  19. Suzuki Y., Nagata A., Ono Y., Yamada T. 1988; Complete nucleotide sequence of the 16S rRNA gene of Mycobacterium bovis BCG. J. Bacteriol. 170:2886–2889
    [Google Scholar]
  20. Tisdall P. A., Roberts G. D., Anhalt J. P. 1979; Identification of clinical isolates of Mycobacterium with gas-liquid chromatography alone. J. Clin. Microbiol. 10:506–515
    [Google Scholar]
  21. Tsukamura M. 1965; Differentiation of mycobacteria by picric acid tolerance. Am. Rev. Respir. Dis. 92:491–492
    [Google Scholar]
  22. Tsukamura M. 1967; Differentiation of mycobacteria by utilisation of nitrogen compounds and carbon sources. Am. Rev. Respir. Dis. 95:307–310
    [Google Scholar]
  23. Tsukamura M. 1969; Identification of group II scotochromogens and group III nonphotochromogens of mycobacteria. Tubercle 50:51–60
    [Google Scholar]
  24. Tsukamura M., Tsukamura S. 1968; Differentiation of mycobacteria by susceptibility to nitrite and propylene glycol. Am. Rev. Respir. Dis. 98:505–506
    [Google Scholar]
  25. Wayne L. G., Good R. C., Krichevsky M. I., Blacklock Z., Chaparas S. D., Dawson D., Dawson D., Froman S., Gross W., Hawkins J., Jenkins P. A., Juhlin I., Kappler W., Kleeberg H. H., Krasnow I., Lefford M. J., Mankiewicz E., McDurmont C., Meissner G., Nel E. E., Pattyn S. R., Portaels F., Richards P. A., Rusch S., Schroder K. H., Szabo I., Tsukamura M., Vergmann B. 1981; First report of the cooperative open-ended study of slowly growing mycobacteria (International Working Group of Mycobacterial Taxonomy). Int. J. Syst. Bacteriol. 31:1–20
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-40-3-217
Loading
/content/journal/ijsem/10.1099/00207713-40-3-217
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error