1887

Abstract

Abstract

It has recently been proposed that three asaccharolytic species forming pigmented colonies on blood agar should be transferred from the genus to the new genus In the taxonomy of the genus cellular fatty acid profiles obtained by gas chromatography and mass spectrometry after methylation and derivatization of whole cells have proved to be useful. In this study cellular fatty acids and sugars were analyzed in strains of and species, and the resulting multivariate data were investigated by using principal component analysis. This analysis clearly separated the spp. strains from the strains of , and In the description of the genus the presence of various hydroxylated fatty acids was not discussed. In this study we show that these cellular components are useful taxonomic markers.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-39-3-314
1989-07-01
2022-08-10
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/39/3/ijs-39-3-314.html?itemId=/content/journal/ijsem/10.1099/00207713-39-3-314&mimeType=html&fmt=ahah

References

  1. Brondz I., Olsen I. 1984; Determination of acids in whole lipopolysaccharide and in free lipid A from Actinobacillus actinomycetemcomitans and Haemophilus aphrophilus. J. Chromatogr. 308:19–29
    [Google Scholar]
  2. Brondz I., Olsen I. 1984; Whole-cell methanolysis as a rapid method for differentiation between Actinobacillus actinomycetemcomitans and Haemophilus aphrophilus. J. Chromatogr. 311:347–353
    [Google Scholar]
  3. Brondz I., Olsen I. 1985; Sugar composition of lipopolysaccharide from Haemophilus paraphrophilus. J. Chromatogr. 345:119–124
    [Google Scholar]
  4. Caroff M., Lebbar S., Szabo L. 1987; Do endotoxins devoid of 3-deoxy-D-manno-2-octulosonic acid exist? Biochem. Biophys. Res. Commun. 143:845–847
    [Google Scholar]
  5. Holdeman L. V., Cato P., Moore W. E. C. 1977 Anaerobic laboratory manual, 4th ed.. Virginia Polytechnic Institute and State University; Blacksburg:
    [Google Scholar]
  6. Johne B., Olsen I., Bryn K. 1988; Fatty acids and sugars in lipopolysaccharides from Bacteroides intermedius, Bacteroides gingivalis, and Bacteroides loescheii. Oral Microbiol. Immunol. 3:22–27
    [Google Scholar]
  7. Koga T., Nishihara T., Fujiwara T., Nisizawa T., Okahashi N., Noguchi T., Hamada S. 1985; Biochemical and immunobiological properties of lipopolysaccharide (LPS) from Bacteroides gingivalis and comparison with LPS from Escherichia coli. Infect. Immun. 47:638–647
    [Google Scholar]
  8. Kumada H., Watanabe K., Umemoto T., Haishima Y., Kondo S., Hisatsune K. 1988; Occurrence of O-phosphorylated 2-keto-3-deoxyoctonate in the lipopolysaccharide of Bacteroides gingivalis. FEMS Microbiol. Lett. 51:77–80
    [Google Scholar]
  9. Lambe D. W. Jr., Ferguson K. P., Mayberry W. R. 1982; Characterization of Bacteroides gingivalis by direct fluorescent antibody staining and cellular fatty acid profiles. Can. J. Microbiol. 28:367–374
    [Google Scholar]
  10. Mansheim B. J., Onderdonk A. B., Kasper D. L. 1978; Immunochemical and biologic studies of the lipopolysaccharide of Bacteroides melaninogenicus subspecies asaccharolyticus. J. Immunol. 120:72–78
    [Google Scholar]
  11. Mardia K. V., Kent J. T., Bibby J. M. 1979 Multivariate analysis Academic Press, Inc.; New York:
    [Google Scholar]
  12. Mashimo J., Yoshida M., Ikeuchi K., Hata S., Arata S., Kasai N., Okuda K., Takazoe I. 1985; Fatty acid composition and Shwartzman activity of lipopolysaccharides from oral bacteria. Microbiol. Immunol. 29:395–403
    [Google Scholar]
  13. Mayberry W. R. Jr., Lambe D. W., Ferguson K. P. 1982; Identification of Bacteroides species by cellular fatty acid profiles. Int. J. Syst. Bacteriol. 32:21–27
    [Google Scholar]
  14. Mayrand D., Holt S. C. 1988; Biology of asaccharolytic black-pigmented Bacteroides species. Microbiol. Rev. 52:134–152
    [Google Scholar]
  15. Millar S. J., Goldstein E. G., Levine M. J., Hausmann E. 1986; Modulation of bone metabolism by two chemically distinct lipopolysaccharide fractions from Bacteroides gingivalis. Infect. Immun. 51:302–306
    [Google Scholar]
  16. Miyagawa E., Azuma R., Suto T. 1979; Cellular fatty acid composition in gram-negative obligately anaerobic rods. J. Gen. Appi. Microbiol. 25:41–51
    [Google Scholar]
  17. Nair B. C., Mayberry W. R., Dziak R., Chen P. B., Levine M. J., Hausmann E. 1983; Biological effects of a purified lipopolysaccharide from Bacteroides gingivalis. J. Periodontal Res. 18:40–49
    [Google Scholar]
  18. Rizza V., Tucker A. N., White D. C. 1970; Lipids of Bacteroides melaninogenicus. J. Bacteriol. 101:84–91
    [Google Scholar]
  19. Shah H. N., Collins M. D. 1980; Fatty acid and isoprenoid quinone composition in the classification of Bacteroides melaninogenicus and related taxa. J. Appl. Bacteriol. 48:75–87
    [Google Scholar]
  20. Shah H. N., Collins M. D. 1988; Proposal for reclassification of Bacteroides asaccharolyticus, Bacteroides gingivalis, and Bacteroides endodontalis in a new genus, Porphyromonas. Int. J. Syst. Bacteriol. 38:128–131
    [Google Scholar]
  21. Van Steenbergen T. J. M., Van Winkelhoff A. J., Mayrand D., Grenier D., De Graaff J. 1984; Bacteroides endodontalis sp. nov., an asaccharolytic black-pigmented Bacteroides species from infected dental root canals. Int. J. Syst. Bacteriol. 34:118–120
    [Google Scholar]
  22. Wold S. 1978; Cross-validatory estimation of the number of components in factor principal components models. Technometrics 20:397–400
    [Google Scholar]
  23. Wold S., Esbendsen K., Geladi P. 1987; Principal component analysis. Chemometr. Intellig. Lab. Syst. 2:37–52
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-39-3-314
Loading
/content/journal/ijsem/10.1099/00207713-39-3-314
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error