1887

Abstract

Abstract

Selected members of the family Pohl 1981 were investigated for their lipoquinone contents by using high-performance liquid chromatography. In addition to ubiquinones and demethylmenaquinones, menaquinones (MK-7 or MK-8 or both) were detected, mostly as minor naphthoquinone components, in several , and related species. Previous studies that relied on difference spectrophotometry and thin-layer chromatography did not identify menaquinone components in lipid extracts of members of the The view that this family can be differentiated from the and other fermenting gram-negative bacteria by a lack of menaquinones cannot be maintained. Although the situation seems to be more complex than previously recognized, the distribution patterns of lipoquinone structural types and their isoprenologs appear to remain a valuable chemotaxonomic tool for these bacteria.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-39-3-304
1989-07-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/39/3/ijs-39-3-304.html?itemId=/content/journal/ijsem/10.1099/00207713-39-3-304&mimeType=html&fmt=ahah

References

  1. Bisgaard M., Mutters R. 1986; A new facultatively anaerobic Gram-negative fermentative rod obtained from different pathological lesions in poultry and tentatively designated taxon 14. Avian Pathol. 15:117–127
    [Google Scholar]
  2. Carlone G. M., Schalla W. O., Moss C. W., Ashley D. L., Fast D. M., Holler J. S., Plikaytis B. D. 1988; Haemophilus ducreyi isoprenoid quinone content and structure determination. Int. J. Syst. Bacteriol. 38:249–253
    [Google Scholar]
  3. Collins M. D. 1985; Analysis of isprenoid quinones. 329–366 Gottschalk G. Methods in microbiology 18 Academic Press, Inc.; New York:
    [Google Scholar]
  4. Collins M. D., Jones D. 1981; Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol. Rev. 45:316–354
    [Google Scholar]
  5. De Ley J. 1978 Modern molecular methods in bacterial taxonomy: evaluation, application, prospects. 247–357Proceedings of the 4th International Conference on Plant Pathogenic Bacteria 1Gibert-Clarey, Tours, France
    [Google Scholar]
  6. Holländer R. 1976; Correlation of the function of demethylmenaquinone in bacterial electron transport with its redox potential. FEBS Lett. 72:98–100
    [Google Scholar]
  7. Holländer R., Hess-Reihse A., Mannheim W. 1981; Respiratory quinones in Haemophilus, Pasteurella and Actinobacillus. 83–97 Kilian M., Frederiksen W., Biberstein E. L. Haemophilus, Pasteurella and Actinobacillus Academic Press, Inc. (London), Ltd.; London:
    [Google Scholar]
  8. Holländer R., Mannheim W. 1975; Characterization of hemophilic and related bacteria by their respiratory quinones and cytochromes. Int. J. Syst. Bacteriol. 25:102–107
    [Google Scholar]
  9. Holländer R., Wolf G., Mannheim W. 1977; Lipoquinones of some bacteria and mycoplasmas, with considerations on their functional significance. Antonie van Leeuwenhoek J. Microbiol. Serol. 43:177–185
    [Google Scholar]
  10. Hoschatt H., Mannheim W. 1979; Zur phänotypischen Charakteristik humaner Pasteurella- und pasteurella-ähnlicher Stämme. Zentralbl. Bakteriol. Mikrobiol. Hyg. A 243:499–510
    [Google Scholar]
  11. Kilian M., Frederiksen W. 1981; Identification tables for the Haemophilus-Pasteurella-Actinobacillus group. 281–290 Kilian M., Frederiksen W., Biberstein E. L. Haemophilus, Pasteurella and Actinobacillus Academic Press, Inc. (London), Ltd.; London:
    [Google Scholar]
  12. Kröger A. 1970; The rate of oxidation of ubiquinone and its position in the respiratory system. 145–148 Quagliariello E. et al. Electron transport and energy conservation Adriatica Editrica; Bari, Italy:
    [Google Scholar]
  13. Kröger A. 1974; Electron transport phosphorylation coupled to fumarate reduction in anaerobically grown Proteus rettgeri. Biochim. Biophys. Acta 347:273–289
    [Google Scholar]
  14. Kröger A. 1977; Bakterielle Atmungsketten. 17–22 Biotechnologie 81 Verlag Chemie, Weinheim; Federal Republic of Germany:
    [Google Scholar]
  15. Kröger A. 1978; Determination of contents and redox states of ubiquinone and menaquinone. Methods Enzymol 53D:579–591
    [Google Scholar]
  16. Kröger A. 1980; Bacterial transport to fumarate. 1–17 Knowles C. J. Diversity of bacterial respiratory systems 2: CRC Press, Inc.; Boca Raton, Fla:
    [Google Scholar]
  17. Kröger A., Dadák V. 1969; On the role of quinones in bacterial electron transport. The respiratory system of Bacillus megaterium. Eur. J. Biochem. 11:328–340
    [Google Scholar]
  18. Kröger A., Dadák V., Klingenberg M., Diemer F. 1971; On the role of quinones in bacterial electron transport. Differential roles of ubiquinone and menaquinone in Proteus rettgeri. Eur. J. Biochem. 21:322–333
    [Google Scholar]
  19. Kröger A., Unden G. 1985; The function of menaquinone in bacterial electron transport. 285–300 Lenaz G. Coenzyme Q. John Wiley & Sons, Ltd.; Chichester, United Kingdom:
    [Google Scholar]
  20. Mannheim W. 1981; Taxonomically useful test procedures pertaining to bacterial lipoquinones and associated functions, with special reference to Flavobacterium and Cytophaga. 114–125 Reichenbach H., Weeks O. B. The Flavobacterium-Cytophaga group Verlag Chemie, Weinheim; Federal Republic of Germany:
    [Google Scholar]
  21. Mannheim W. 1981; Taxonomic implications of DNA relatedness and quinone patterns in Actinobacillus, Haemophilus and Pasteurella. 265–280 Kilian M., Frederiksen W., Biberstein E. L. Haemophilus, Pasteurella and Actinobacillus Academic Press, Inc. (London), Ltd.; London:
    [Google Scholar]
  22. Mannheim W. 1984; Family III. Pasteurellaceae Pohl 1981. 550–552 Krieg N. R., Holt J. G. Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  23. Mannheim W., Stieler W., Wolf G., Zabel R. 1978; Taxonomic significance of respiratory quinones and fumarate respiration in Actinobacillus and Pasteurella. Int. J. Syst. Bacteriol. 28:7–13
    [Google Scholar]
  24. Mutters R., Bisgaard M., Pohl S. 1986; Taxonomie relationship of selected biogroups of Pasteurella haemolytica as revealed by DNA-DNA hybridizations. Acta Pathol. Microbiol. Scand. Sect. B 94:195–202
    [Google Scholar]
  25. Mutters R., Ihm P., Frederiksen W., Mannheim W. 1985; Reclassification of the genus Pasteurella Trevisan 1887 on the basis of deoxyribonucleic acid homology, with proposal for the new species Pasteurella dagmatis, Pasteurella canis, Pasteurella stomatis, Pasteurella anatis, and Pasteurella langaa. Int. J. Syst. Bacteriol. 35:309–322
    [Google Scholar]
  26. Speck H., Kroppenstedt R. M., Mannheim W. 1987; Genomic relationships and species differentiation in the genus Capnocytophaga. Zentralbl. Bakteriol. Mikrobiol. Hyg. A 266:390–402
    [Google Scholar]
  27. Stackebrandt E., Murray R. G. E., Trüper H. G. 1988; Proteobacteria classis nov., a name for the phylogenetic taxon that includes the “purple bacteria and their relatives.” Int. J. Syst. Bacteriol. 38:321–325
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-39-3-304
Loading
/content/journal/ijsem/10.1099/00207713-39-3-304
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error