1887

Abstract

Abstract

Fluorometric hybridization in microdilution wells was developed to determine genetic relatedness among microorganisms. Total chromosomal deoxyribonucleic acid (DNA) for hybridization reactions was labeled with photoreactive biotin (photobiotin). The biotinylated DNA was hybridized with single-stranded unlabeled DNAs which had been immobilized on the surfaces of microdilution wells. After hybridization, biotinylated DNA was quantitatively detected with beta--galactosidase and a fluorogenic substrate, 4-methylumbelliferyl-beta--galactopyranoside. Homology values obtained with this fluorometric direct binding method were compared with values obtained with two membrane filter methods, one in which photobiotin labeling was used and one in which radioisotope labeling was used. The results showed that the fluorometric direct binding method in which microdilution wells are used could be an alternative to radioisotope and membrane filter hybridization methods.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-39-3-224
1989-07-01
2022-05-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/39/3/ijs-39-3-224.html?itemId=/content/journal/ijsem/10.1099/00207713-39-3-224&mimeType=html&fmt=ahah

References

  1. Bolton E. T., McCarthy B. J. 1962; A general method for the isolation of RNA complementary to DNA. Proc. Natl. Acad. Sci. USA 48:1390–1397
    [Google Scholar]
  2. Brenner D. J., Fanning G. R., Rake A. V., Johnson K. E. 1969; Batch procedure for thermal elution of DNA from hydroxyapatite. Anal. Biochem. 28:447–459
    [Google Scholar]
  3. Coykendall A., Wesbecher P. M., Gustafson K. B. 1987; “Streptococcus milleri,” Streptococcus constellatus, and Streptococcus intermedins are later synonyms of Streptococcus anginosus. Int. J. Syst. Bacteriol. 37:222–228
    [Google Scholar]
  4. Crosa J. H., Brenner D. J., Falkow S. 1973; Use of a single-strand-specific nuclease for analysis of bacterial and plasmid deoxyribonucleic acid homo- and heteroduplexs. J. Bacteriol 115:904–911
    [Google Scholar]
  5. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur. J. Biochem. 12:133–142
    [Google Scholar]
  6. Ezaki T., Hashimoto Y., Takeuchi N., Miura H., Matsui Y., Yabuuchi E. 1988; Simple genetic identification method of viridans group streptococci by colorimetric dot hybridization and quantitative fluorometric hybridization in microdilution wells. J. Clin. Microbiol. 26:1708–1713
    [Google Scholar]
  7. Ezaki T., Takeuchi N., Liu S. L., Kai A., Yamamoto H., Yabuuchi E. 1988; Small-scale DNA preparation for rapid genetic identification of Campylobacter species without radioisotope. Microbiol. Immunol. 32:141–150
    [Google Scholar]
  8. Ezaki T., Yamamoto N., Ninomiya K., Suzuki S., Yabuuchi E. 1983; Transfer of Peptococcus indolicus, Peptococcus asaccharolyticus, Peptococcus prevotii, and Peptococcus magnus to the genus Peptostreptococcus and proposal of Peptostreptococcus tetradius sp. nov. Int. J. Syst. Bacteriol. 33:683–698
    [Google Scholar]
  9. Fineberg A. P., Vogelstein B. 1983; A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132:6–13
    [Google Scholar]
  10. Forster A. C., Mclnnes J. L., Skingle D. C., Symons R. H. 1985; Non-radioactive hybridization probes prepared by chemical labelling of DNA and RNA with a novel reagent, photobiotin. Nucleic Acids Res. 3:745–761
    [Google Scholar]
  11. Gebeyechu G., Rao P. Y., SooChan P., Simms D. A., Kievan L. 1987; Novel biotinylated nucleotide—analogs for labeling and colorimetric detection of DNA. Nucleic Acids Res. 15:4513–4534
    [Google Scholar]
  12. Gillespie D., Spiegelman S. 1965; A quantitative assay for DNA/RNA hybrids with DNA immobilized on a membrane. J. Mol. Biol. 12:829–842
    [Google Scholar]
  13. Johnson J. L. 1984; Nucleic acids in bacterial classification. 8–11 Krieg N. R., Holt J. G. Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  14. Leary J. J., Brigati D. J., Ward D. C. 1983; Rapid and sensitive colorimetric method for visualizing biotin-labeled DNA probes hybridized to DNA or RNA immobilized on nitrocellulose:bio-blots. Proc. Natl. Acad. Sci. USA 80:4045–4049
    [Google Scholar]
  15. Meinkoth J., Wahl G. 1984; Hybridization of nucleic acids immobilized on solid supports. Anal. Chem. 138:267–284
    [Google Scholar]
  16. Neurath A. R., Strick N. 1981; Enzyme-linked fluorescence immunoassays using β-galactosidase and antibodies covalently bound to polystyrene plates. J. Virol. Methods 3:155–165
    [Google Scholar]
  17. Renz M., Kurz C. 1984; A colorimetric method for DNA hybridization. Nucleic Acids Res. 12:3435–3444
    [Google Scholar]
  18. Rigby P. W., Dickmann M., Rhodes C., Berg P. 1977; Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J. Mol. Biol. 113:237–251
    [Google Scholar]
  19. Seidler R. J., Mandel M. 1972; Quantitative aspects of deoxyribonucleic acid renaturation: base composition, state of chromosome replication, and polynucleotide homologies. J. Bacteriol. 106:608–614
    [Google Scholar]
  20. Yokota Y., Yokoo K., Nagata Y. 1986; A quantitative assay for the detection of hepatitis B virus DNA employing a biotinlabeled DNA probe and the avidin-β-galactosidase complex. Biochim. Biophys. Acta 868:45–50
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-39-3-224
Loading
/content/journal/ijsem/10.1099/00207713-39-3-224
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error