1887

Abstract

Abstract

High-performance liquid chromatography is a promising alternative for determining the G+C content of bacterial deoxyribonucleic acid (DNA). The method which we evaluated involves enzymatic degradation of the DNA to nucleosides by PI nuclease and bovine intestinal mucosa alkaline phosphatase, separation of the nucleosides by high-performance liquid chromatography, and calculation of the G+C content from the apparent ratios of deoxyguanosine and thymidine. Because the nucleosides are released from the DNA at different rates, incomplete degradation produces large errors in the apparent G+C content. For partially purified DNA, salts are a major source of interference in degradation. However, when the salts are carefully removed, the preparation and degradation of DNA contribute little error to the determination of G+C content. This method also requires careful selection of the chromatographic conditions to ensure separation of the major nucleosides from the nucleosides of modified bases and precise control of the flow rates. Both of these conditions are achievable with standard equipment and C18 reversed-phase columns. Then the method is precise, and the relative standard deviations of replicate measurements are close to 0.1%. It is also rapid, and a single measurement requires about 15 min. It requires small amounts of sample, and the G+C content can be determined from DNA isolated from a single bacterial colony. It is not affected by contamination with ribonucleic acid. Because this method yields a direct measurement, it may also be more accurate than indirect methods, such as the buoyant density and thermal denaturation methods. In addition, for highly purified DNA, the extent of modification can be determined.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-39-2-159
1989-04-01
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/39/2/ijs-39-2-159.html?itemId=/content/journal/ijsem/10.1099/00207713-39-2-159&mimeType=html&fmt=ahah

References

  1. Bak A. L., Atkins J. F., Meyer S. A. 1972; Evolution of DNA base compositions in microorganisms. Science 175:1391–1393
    [Google Scholar]
  2. Beji A., Izard D., Gavini F., Leclerc H., Leseine-Delstanche M., Krembel J. 1987; A rapid chemical procedure for isolation and purification of chromosomal DNA from Gram-negative bacilli. Anal. Biochem. 162:18–23
    [Google Scholar]
  3. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal. Biochem. 81:461–466
    [Google Scholar]
  4. DeLey J. 1967; The quick approximation of DNA base composition from absorbancy ratios. Antonie van Leeuwenhoek J. Microbiol. Serol. 33:203–208
    [Google Scholar]
  5. DeLey J. 1970; Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. J. Bacteriol. 101:738–754
    [Google Scholar]
  6. Ehrlich M. 1979; Separation of six DNA bases by ion pair-reversed phase high pressure liquid chromatography. J. Chromatogr. Sci. 17:531–534
    [Google Scholar]
  7. Ehrlich M., Gama-Sosa M. A., Carreira L. H., Ljungdahl L. G., Kuo K. C., Gehrke C. W. 1985; DNA methylation in thermophilic bacteria; N4-methylcytosine, 5-methylcytosine, and N6-methyladenine. Nucleic Acids Res. 13:1399–1412
    [Google Scholar]
  8. Elton R. A. 1973; The relationship of DNA base composition and individual protein composition in micro-organisms. J. Mol. Evol. 2:263–276
    [Google Scholar]
  9. Elton R. A. 1974; Theoretical models for heterogeneity of base composition in DNA. J. Theor. Biol. 45:533–553
    [Google Scholar]
  10. Fernley H. N. 1971; Mammalian alkaline phosphatases. 417–447 Boyer P. D. The enzymes 4, 3rd ed.. Academic Press, Inc.; New York:
    [Google Scholar]
  11. Fredericq E., Oth A., Fontaine F. 1961; The ultraviolet spectrum of deoxyribonucleic acids and their constituents. J. Mol. Biol. 3:11–17
    [Google Scholar]
  12. Fujimoto M., Kuninaka A., Yoshino H. 1974; Purification of a nuclease from Pénicillium citrinum. Agric. Biol. Chem. 38:777–783
    [Google Scholar]
  13. Fujimoto M., Kuninaka A., Yoshino H. 1974; Identity of phosphodiesterase and phosphomonoesterase activities with nuclease P1 (a nuclease from Pénicillium citrinum). Agric. Biol. Chem. 38:785–790
    [Google Scholar]
  14. Fujimoto M., Kuninaka A., Yoshino H. 1974; Substrate specificity of nuclease Agric. Biol. Chem. 38:1555–1561
    [Google Scholar]
  15. Gehrke C. W., McCune R. A., Gama-Sosa M. A., Ehrlich M., Kuo K. C. 1984; Quantitative reversed-phase high-performance liquid chromatography of major and modified nucleosides in DNA. J. Chromatogr. 301:199–219
    [Google Scholar]
  16. Huang P. C., Rosenberg E. 1966; Determination of DNA base composition via depurination. Anal. Biochem. 16:107–113
    [Google Scholar]
  17. Ko C. Y., Johnson J. L., Barnett L. B., McNair H. M., Vercellotti J. R. 1977; A sensitive estimation of the percentage of guanine plus cytosine in deoxyribonucleic acid by high performance liquid chromatography. Anal. Biochem. 80:183–192
    [Google Scholar]
  18. Kuo K. C., McCune R. A., Gehrke C. W., Midgett R., Ehrlich M. 1980; Quantitative reversed-phase high performance liquid chromatographic determination of major and modified deoxyribonucleosides in DNA. Nucleic Acids Res. 8:4763–4776
    [Google Scholar]
  19. Lesk A. M. 1973; On hypothesized selective pressure by u.v. on DNA base compositions. J. Theor. Biol. 40:201–202
    [Google Scholar]
  20. Mandel M., Marmur J. 1968; Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol. 12:195–206
    [Google Scholar]
  21. Mandel M., Schildkraut C. L., Marmur J. 1968; Use of CsCl density gradient analysis for determining the guanine plus cytosine content of DNA. Methods Enzymol. 12:184–195
    [Google Scholar]
  22. Maniatis T., Fritsch E. F., Sambrook J. 1982; Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor; N.Y.:
    [Google Scholar]
  23. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol. 5:109–118
    [Google Scholar]
  24. Mischke C. F., Wickstrom E. 1980; Deoxynucleoside composition of DNAs and modified nucleoside composition of tRNAs determined at nanomole sensitivity by reversed-phase liquid chromatography. Anal. Biochem. 105:181–187
    [Google Scholar]
  25. Muto A., Osawa S. 1987; The guanine and cytosine content of genomic DNA and bacterial evolution. Proc. Natl. Acad. Sci. USA 84:166–169
    [Google Scholar]
  26. Presber W., Schroeder C., Krueger D. H. 1976; The evolution of mutation rates via DNA base composition and mutator genes: a proposition. J. Theor. Biol. 59:353–360
    [Google Scholar]
  27. Sanger F., Coulson A. R., Hong G. F., Hill D. F., Petersen G. B. 1982; Nucleotide sequence of bacteriophage λ DNA. J. Mol. Biol. 162:729–773
    [Google Scholar]
  28. Schildkraut C. L., Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. J. Mol. Biol. 4:430–443
    [Google Scholar]
  29. Singer C. E., Ames B. N. 1970; Sunlight ultraviolet and bacterial DNA base ratios. Science 170:822–826
    [Google Scholar]
  30. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol. Lett. 25:125–128
    [Google Scholar]
  31. Ulitzur S. 1972; Rapid determination of DNA base composition by ultraviolet spectroscopy. Biochim. Biophys. Acta 272:1–11
    [Google Scholar]
  32. Wang S. Y. 1968; The determination of nucleic acid base composition by chemical reactivity. Methods Enzymol. 12:178–184
    [Google Scholar]
  33. Wang S. Y., Hashagen J. M. 1964; The determination of the base composition of deoxyribonucleic acids by bromination. J. Mol. Biol. 8:333–340
    [Google Scholar]
  34. Wetmur J. G., Davidson N. 1968; Kinetics of renaturation of DNA. J. Mol. Biol. 31:349–370
    [Google Scholar]
  35. Whitman W. B., Shieh J., Sohn S., Caras D. S., Premachandran U. 1986; Isolation and characterization of 22 mesophilic methanococci. Syst. Appl. Microbiol. 7:235–240
    [Google Scholar]
  36. Woese C. R., Bleyman M. A. 1972; Genetic code limit organisms—do they exist? J. Mol. Evol. 1:223–229
    [Google Scholar]
  37. Yamagishi H. 1970; Nucleotide distribution in the DNA of Escherichia coli. J. Mol. Biol. 49:603–608
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-39-2-159
Loading
/content/journal/ijsem/10.1099/00207713-39-2-159
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error