1887

Abstract

Abstract

Bifunctional proteins are the result of relatively infrequent genetic events that are faithfully conserved. They are reliable markers that define phylogenetic clusters. The bifunctional protein anthranilate synthase: anthranilate 5-phosphoribosylpyrophosphate phosphoribosyltransferase (AS:PRT) separates two enteric clusters. Previously published data show that this bifunctional protein is present in the lineage shared by , and , but is absent in , and It has been postulated that aerogenic and anaerogenic strains of belong to different groups, which correspond to the clusters mentioned above, respectively. In confirmation of this, we found that ATCC 29915 (aerogenic) possesses bifunctional AS:PRT, whereas ATCC 27155 (T = type strain) (anaerogenic) lacks AS:PRT. We also found that 33243 lacks AS:PRT. Beji et al. (Int. J. Syst. Bacteriol. 38:77-88) recently showed that the type strains of (ATCC 27155) and (ATCC 33243) belong to the same genomic species. We suggest that (= should be excluded from the genus We further suggest that strains currently designated can be grouped with or with the enteric cluster containing depending upon whether bifunctional AS:PRT is absent or present, respectively.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-39-2-100
1989-04-01
2022-08-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/39/2/ijs-39-2-100.html?itemId=/content/journal/ijsem/10.1099/00207713-39-2-100&mimeType=html&fmt=ahah

References

  1. Ahmad S., Jensen R.A. 1986; The evolutionary history of two bifunctional proteins that emerged in the purple bacteria. Trends Biochem. Sci. 11:108–112
    [Google Scholar]
  2. Ahmad S., Jensen R.A. 1988; New prospects for deducing the evolutionary history of metabolic pathways in prokaryotes: aromatic biosynthesis as a case-in-point. Origins Life 18:41–57
    [Google Scholar]
  3. Ahmad S., Jensen R.A. 1988; The phylogenetic origin of the bifunctional tyrosine-pathway protein in the enteric lineage of bacteria. Mol. Biol. Evol. 5:282–297
    [Google Scholar]
  4. Ahmad S., Johnson J.L., Jensen R.A. 1987; The recent evolutionary origin of the phenylalanine-sensitive isozyme of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase in the enteric lineage of bacteria. J. Mol. Evol. 25:159–167
    [Google Scholar]
  5. Beji A., Mergaert J., Gavini F., Izard D., Kersters K., Leclerk H., De Ley J. 1988; Subjective synonymy of Erwinia herbicola, Erwinia milletiae, and Enterobacter agglomerans and redefinition of the taxon by genotypic and phenotypic data. Int. J. Syst. Bacteriol. 38:77–88
    [Google Scholar]
  6. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of proteins utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254
    [Google Scholar]
  7. Brenner D. J. 1981; The genus Enterobacter. 1173–1180 In Starr M.P., Stolp H., Truper H.G., Balows A., Schlegel H.G. (ed.) The prokaryotes Springer-Verlag; Berlin:
    [Google Scholar]
  8. Brenner D. J., Fanning G.R., Knutson J.K. L., Steigerwalt A.G., Krichevsky M. I. 1984; Attempts to classify herbicola group -Enterobacter agglomerans strains by deoxyribonucleic acid hybridization and phenotypic tests. Int. J. Syst. Bacteriol. 34:45–55
    [Google Scholar]
  9. Crawford I. P. 1980; Gene fusions in the tryptophan pathway: tryptophan synthase and phosphoribosyl-anthranilate isomerase:indoleglycerolphosphate synthase. 151–173 In Bisswanger H., Schmincke-Ott E. (ed.) Multifunctional proteins John Wiley & Sons, Inc.; New York:
    [Google Scholar]
  10. Ewing W. H., Fife M.A. 1972; Enterobacter agglomerans (Beijerinck) comb. nov. (the Herbicola-Lathyri bacteria). Int. J. Syst. Bacteriol. 22:4–11
    [Google Scholar]
  11. Farmer J. J. III, Davis B.R., Hickman-Brenner F.W., McWhorter A., Huntley-Carter G.P., Asbury M.A., Riddle C., Wathen-Grady H.G., Elias C., Fanning G.R., Steigerwalt A.G., O’Hara C. M., Morris G. K., Smith P. B., Brenner D. J. 1985; Biochemical identification of new species and biogroups of Enterobacteriaceae isolated from clinical specimens. J. Clin. Microbiol. 21:46–76
    [Google Scholar]
  12. Gibons F. 1970 Preparation of chorismic acid. Methods Enzymol 17A:362–364
    [Google Scholar]
  13. Henderson E. J., Nagano H., Zalkin H., Hwang L.H. 1970; The anthranilate synthase-anthranilate 5-phosphoribosylpyrophosphate phosphoribosyltransferase aggregate: purification of the aggregate and regulatory properties of anthranilate synthetase. J. Biol. Chem. 245:1416–1423
    [Google Scholar]
  14. Hwang L. H., Zalkin H. 1971; Multiple forms of anthranilate synthetase-anthranilate 5-phosphoribosylpyrophosphate phosphoribosyltransferase from Salmonella typhimurium. J. Biol. Chem. 246:2338–2345
    [Google Scholar]
  15. Ito J., Yanofsky C. 1969; Anthranilate synthetase, an enzyme specified by tryptophan operon of Escherichia coli: comparative studies on the complex and the subunits. J. Bacteriol. 97:734–742
    [Google Scholar]
  16. Jensen R. A. 1985; Biochemical pathways in prokaryotes can be traced backward through evolutionary time. Mol. Biol. Evol. 2:92–108
    [Google Scholar]
  17. Largen M., Belser W.L. 1975; Tryptophan biosynthetic pathway in Enterobacteriaceae: some physical properties of enzymes. J. Bacteriol. 121:239–249
    [Google Scholar]
  18. Lelliott R. A. 1974; Genus XII. Erwinia Winslow, Broadhurst, Buchanan, Krumwiede, Rogers and Smith 1920, 209. 332–339 In Buchanan R.E., Gibbons N.E. (ed.) Bergey’s manual of determinative bacteriology, 8th ed.. The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  19. Lelliott R. A., Dickey R.S. 1985; Genus VII. Erwinia Winslow, Broadhurst, Buchanan, Krumwiede, Rogers and Smith, 1920, 209. 469–476 In Krieg N.R., Holt J.G. (ed.) Bergey’s manual of systematic bacteriology vol. 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  20. Richard C. 1985; Genus VI. Enterobacter Hormaeche and Edwards 1960, 72, Norn. cons. opin. 28, Jud. Comm. 1963, 38. 465–469 In Krieg N.R., Holt J.G. (ed.) Bergey’s manual of systematic bacteriology vol. 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  21. Skerman V. B. D., McGowan V., Sneath P. H. A. (ed.) 1980; Approved lists of bacterial names. Int. J. Syst. Bacteriol. 30:225–420
    [Google Scholar]
  22. Winkler U. Κ., Stuckman M. 1979; Glycogen, hyaluronate, and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens. J. Bacteriol. 138:663–670
    [Google Scholar]
  23. Zalkin H. 1980; Anthranilate synthase: relationship between bifunctional and monofunctional enzymes. 123–149 In Bisswanger H., Schmincke-Ott E. (ed.) Multifunctional proteins John Wiley & Sons, Inc.; New York:
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-39-2-100
Loading
/content/journal/ijsem/10.1099/00207713-39-2-100
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error