1887

Abstract

A total of 39 strains assigned to the strictly anaerobic species were examined for deoxyribonucleic acid (DNA) relatedness. The guanine-plus-cytosine (G+C) base contents determined from the buoyant densities of chromosomal DNAs of 27 strains were 39.0 to 42.0 mol%. Another nine strains had G+C contents of 42.0 to 45.0 mol%, and three other strains had higher G+C contents (46.4 to 49.2 mol%). Genetic relationships among the strains were determined by DNA hybridizations, using both spectrophotometric and membrane filter techniques. The relationships derived by both methods are compared. The G+C content and hybridization results indicate that the strains comprise a genetically heterogeneous group, representing a number of distinct species. Strain D1, the type strain of , was not closely related to any of the other 38 strains. Five groups of related bacteria, encompassing 20 strains, were identified as forming five separate species. The largest group identified by DNA relatedness as belonging to the same species contained only six strains. The other 19 strains were not closely related to any other strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-38-4-340
1988-10-01
2024-04-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/38/4/ijsem-38-4-340.html?itemId=/content/journal/ijsem/10.1099/00207713-38-4-340&mimeType=html&fmt=ahah

References

  1. Berns K. I., Thomas C. A. 1965; Isolation of high molecular weight DNA from Hemophilus influenzae. J. Mol. Biol. 11:476–490
    [Google Scholar]
  2. Brenner D. J. 1973; Deoxyribonucleic acid reassociation in the taxonomy of enteric bacteria. Int. J. Syst. Bacteriol. 23:298307
    [Google Scholar]
  3. Bryant M. P. 1984 Genus IV. Butyrivibrio. 641–6431376–1379 Krieg N. R., Holt J. G.ed Bergey’s manual of systematic bacteriology The Williams & Williams Co.; Baltimore:
    [Google Scholar]
  4. Bryant M. P., Small N. 1956; The anaerobic monotrichous butyric acid-producing curved rod-shaped bacteria of the rumen. J. Bacteriol. 72:16–21
    [Google Scholar]
  5. Burton K. 1955; A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem. J. 62:315–323
    [Google Scholar]
  6. Cheng K.-J., Costerton J. W. 1977; Ultrastructure of Butyrivibrio fibrisolvens: a gram-positive bacterium. J. Bacteriol. 129:1506–1512
    [Google Scholar]
  7. Cheng K.-J., Jones G. A., Simpson F. J., Bryant M. P. 1969; Isolation and identification of rumen bacteria capable of anaerobic rutin degradation. Can. J. Microbiol. 15:1365–1371
    [Google Scholar]
  8. Dehority B. A. 1966; Characterization of several bovine rumen bacteria isolated with a xylan medium. J. Bacteriol. 91:17241729
    [Google Scholar]
  9. Dehority B. A. 1969; Pectin-fermenting bacteria isolated from the bovine rumen. J. Bacteriol. 99:189–196
    [Google Scholar]
  10. Dehority B. A. 1975 Characterization studies on rumen bacteria isolated from Alaskan reindeer (Rangifer taradus L.). 228–240 Luick J. R., Lent P. C., Klein D. R., White R. G.ed Proceedings of the First International Reindeer and Caribou Symposium University of Alaska; Fairbanks:
    [Google Scholar]
  11. Dehority B. A., Grubb J. A. 1977; Characterization of the predominant bacteria occurring in the rumen of goats (Capra hire us). Appl. Environ. Microbiol. 33:1030–1036
    [Google Scholar]
  12. De Ley J. 1970; Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. J. Bacteriol. 101:738–754
    [Google Scholar]
  13. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur. J. Biochem. 12:133–142
    [Google Scholar]
  14. Denhardt D. T. 1966; A membrane filter technique for the detection of complementary DNA. Biochem. Biophys. Res. Commun. 23:641–646
    [Google Scholar]
  15. Dibbayawan T., Cox G., Yip Cho K., Dwarte D. M. 1985; Cell wall and plasma membrane architecture of Butyrivibrio spp. J. Ultrastruct. Res. 90:286–293
    [Google Scholar]
  16. Hazlewood G. P., Dawson R. M. C. 1975; Isolation and properties of a phospholipid-hydrolysing bacterium from ovine rumen fluid. J. Gen. Microbiol. 89:163–174
    [Google Scholar]
  17. Hazlewood G. P., Dawson R. M. C. 1979; Characteristics of a lipolytic and fatty acid-requiring Butyrivibrio sp. isolated from the ovine rumen. J. Gen. Microbiol. 112:15–27
    [Google Scholar]
  18. Hazlewood G. P., Theodorou M. K., Hutchings A., Jordan D. J., Galfre G. 1986; Preparation and characterization of monoclonal antibodies to a Butyrivibrio sp. and their potential use in the identification of rumen butyrivibrios, using an enzyme-linked immunosorbent assay. J. Gen. Microbiol. 132:43–52
    [Google Scholar]
  19. Henderson C. 1973; The effects of fatty acids on pure cultures of rumen bacteria. J. Agric. Sci. 81:107–112
    [Google Scholar]
  20. Henning P. A. 1979; Examination of methods for enumerating hemicellulose-utilizing bacteria in the rumen. Appl. Environ. Microbiol. 38:13–17
    [Google Scholar]
  21. Hespell R. B., Canale-Parola E. 1970; Spirochaeta litoralis sp. n., a strictly anaerobic marine spirochete. Arch. Microbiol. 74:1–8
    [Google Scholar]
  22. Hungate R. E. 1966 The rumen and its microbes. 8–90 Academic Press, Inc.; New York:
    [Google Scholar]
  23. Johnson J. L. 1973; Use of nucleic acid homologies in the taxonomy of anaerobic bacteria. Int. J. Syst. Bacteriol. 23:308315
    [Google Scholar]
  24. Leedle J. A., Hespell R. B. 1980; Differential carbohydrate media and anaerobic replica plating technique in delineating carbohydrate-utilizing subgroups in rumen bacterial populations. Appl. Environ. Microbiol. 39:709–719
    [Google Scholar]
  25. Lewis S. M., Dehority B. A. 1985; Microbiology and ration digestibility in the hindgut of the ovine. Appl. Environ. Microbiol. 50:356–363
    [Google Scholar]
  26. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular cloning: a laboratory manual. 109–110468–469 Cold Spring Harbor Laboratory; Cold Spring Harbor, N.Y:
    [Google Scholar]
  27. Margherita S. S., Hungate R. E. 1963; Serological analysis of Butyrivibrio from the bovine rumen. J. Bacteriol. 86:855–860
    [Google Scholar]
  28. Marmur J., Falkow S., Mandel M. 1963; New approaches to bacterial taxonomy. Annu. Rev. Microbiol. 17:329–372
    [Google Scholar]
  29. Moore W. E. C., Johnson J. L., Holdeman L. V. 1976; Emendation of Bacteroidaceae and Butyrivibrio and descriptions of Desulfomonas gen. nov. and ten new species in the genera Desulfomonas, Butyrivibrio, Eubacterium, Clostridium, and Ruminicoccus. Int. J. Syst. Bacteriol. 26:238–252
    [Google Scholar]
  30. Nakamura L. K., Swezey J. 1983; Taxonomy of Bacillus circulans Jordan 1890: base composition and reassociation of deoxyribonucleic acid. Int. J. Syst. Bacteriol. 33:46–52
    [Google Scholar]
  31. Orpin C. G., Mathiesen S. D., Greenwood Y., Blix A. S. 1985; Seasonal changes in the ruminal microflora of the high-artic Svalbard reindeer (Rangifer tarandus platyrhynchus). Appl. Environ. Microbiol. 50:144–151
    [Google Scholar]
  32. Robinson I. M., Allison M. J., Bucklin J. 1981; Characterization of the cecal bacteria of normal pigs. Appl. Environ. Microbiol. 41:950–955
    [Google Scholar]
  33. Schildkraut C. L., Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. J. Mol. Biol. 4:430–433
    [Google Scholar]
  34. Seidler R. J., Knittel M. D., Brown C. 1975; Potential pathogens in the environment: cultural reactions and nucleic acid studies on Klebsiella pneumoniae from clinical and environmental sources. Appl. Microbiol. 29:819–825
    [Google Scholar]
  35. Shane B. S., Gouws L., Kistner A. 1969; Cellulolytic bacteria occurring in the rumen of sheep conditioned to low-protein teff hay. J. Gen. Microbiol. 55:445–457
    [Google Scholar]
  36. Sharpe M. E., Brock J. H., Phillips B. A. 1975; Glycerol techoic acid as an antigenic determinant in a gram-negative bacterium Butyrivibrio fibrisolvens. J. Gen. Microbiol. 88:355–363
    [Google Scholar]
  37. Sharpe M. E., Reiter B. 1972; Common antigenic determinant in a rumen organism and in salmonellae containing the antigen 04. Appl. Microbiol. 24:613–617
    [Google Scholar]
  38. Sokal R. R., Michener C. D. 1958; A statistical method for evaluating systematic relationships. Univ. Kans. Sci. Bull. 38:1409–1438
    [Google Scholar]
  39. Stack R. J. 1988; Neutral sugar composition of extracellular polysaccharides produced by strains of Butyrivibrio fibrisolvens. Appl. Environ. Microbiol. 54:878–883
    [Google Scholar]
  40. Van Gylswyk N. O., Roche C. E. G. 1970; Characteristics of Ruminococcus and cellulolytic Butyrivibrio species from the rumens of sheep fed differently supplemented teff hay diets. J. Gen. Microbiol. 64:11–17
    [Google Scholar]
  41. Wilson S. 1953; Some carbohydrate-fermenting organisms isolated from the rumen of the sheep. J. Gen. Microbiol. 9:i–ii
    [Google Scholar]
  42. Wojciechowicz M., Heinrichova K., Ziolecki A. 1982; An exopectate lyase of Butyrivibrio fibrisolvens from the bovine rumen. J. Gen. Microbiol. 128:2661–2665
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-38-4-340
Loading
/content/journal/ijsem/10.1099/00207713-38-4-340
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error