1887

Abstract

The Subcommittee for Taxonomy of Methanogenic Bacteria has agreed in principle on minimum requirements for the description of new taxa of methanogenic bacteria. These requirements, as well as methods for determining specified characteristics, are indicated here and are proposed as minimal standards for the taxonomic description of new taxa of methanogens. The specified phenotypic characteristics are often not sufficient to distinguish among taxa or to determine the phylogenetic placement of a taxon, and, in these cases, additional chemotaxonomic, molecular, or genetic data may be required. The placement of a new taxon should be consistent with phylogeny, usually based on tests such as nucleic acid sequencing or cataloging studies or on protein fingerprinting. Suggestions are welcome for the improvement of these requirements, which are tentative until given final approval by the International Committee on Systematic Bacteriology.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-38-2-212
1988-04-01
2022-05-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/38/2/ijsem-38-2-212.html?itemId=/content/journal/ijsem/10.1099/00207713-38-2-212&mimeType=html&fmt=ahah

References

  1. Archer D. B. 1984; Detection and quantitation of methanogens by enzyme-linked immunosorbent assay. Appl. Environ. Microbiol. 48:797–801
    [Google Scholar]
  2. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S. 1979; Methanogens: réévaluation of a unique biological group. Microbiol. Rev. 43:260–296
    [Google Scholar]
  3. Barker H. A. 1936; Studies upon the methane-producing bacteria. Arch. MikrobioL 7:420–438
    [Google Scholar]
  4. Blotevogel K. H., Fischer U., Liipkes K. H. 1986; Methanococcus frisius sp. nov., a new methylotrophic marine methanogen. Can. J. Microbiol. 32:127–131
    [Google Scholar]
  5. Boone D. R. 1987; Replacement of the type strain of Methanobacterium formicicum, and reinstatement of Methanobacterium bryantii sp. nov., nom. rev. (ex Balch and Wolfe, 1981) with M.o.H. (DSM 863) as the type strain. Int. J. Syst. Bacteriol. 37:172–173
    [Google Scholar]
  6. Boone D. R., Worakit S., Mathrani I. M., Mah R. A. 1986; Alkaliphilic methanogens from high-pH lake sediments. Syst. Appl. Microbiol. 7:230–234
    [Google Scholar]
  7. Bryant M. P., Boone D. R. 1987; Emended description of strain MST (DSM 800T), the type strain of Methanosarcina barkeri. Int. J. Syst. Bacteriol. 37:169–170
    [Google Scholar]
  8. Bryant M. P., Boone D. R. 1987; Isolation and characterization of Methanobacterium formicicum MF. Int. J. Syst. Bacteriol. 37:171
    [Google Scholar]
  9. Bryant M. P., Tzeng S. F., Robinson I. M., Joyner A. E. Jr. 1971; Nutrient requirements of methanogenic bacteria. Am. Chern. Soc. Adv. Chern. Ser. 105:23–40
    [Google Scholar]
  10. Bryant M. P., Wolin E. A., Wolin M. J., Wolfe R. S. 1967; Methanobacterium omelianskii, a symbiotic association of two species of bacteria. Arch. MikrobioL 59:20–31
    [Google Scholar]
  11. Conway de Macario E., Macario A. J. L., Wolin M. J. 1982; Specific antisera and immunological procedures for characterization of methanogenic bacteria. J. Bacteriol. 149:320328
    [Google Scholar]
  12. DeLuca S. J., Voorhees K. J., Langworthy T. A., Holzer G. 1986; Capillary supercritical fluid chromatography of archaebacterial glycerol tetraether lipids. J. High Resolut. Chromatogr. Chromatogr. Commun. 9:182–185
    [Google Scholar]
  13. Doetsch R. N. 1981 Determinative methods of light microscopy. 21–33 Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B.ed Manual of methods for general bacteriology American Society for Microbiology; Washington, D.C:
    [Google Scholar]
  14. Ferry J. G., Smith P. H., Wolfe R. S. 1974; Methanospirillum, a new genus of methanogenic bacteria, and characterization of Methanospirillum hungatii sp. nov. Int. J. Syst. Bacteriol. 24:465–469
    [Google Scholar]
  15. Grant W. D., Pinch G., Harris J. E., De Rosa D., Gambacorta A. 1985; Polar lipids in methanogen taxonomy. J. Gen. Microbiol. 131:3277–3286
    [Google Scholar]
  16. Huber H., Thomm M., König H., Thies G., Stetter K. O. 1982; Methanococcus thermolithotrophicus, a novel thermophilic lithotrophic methanogen. Arch. Microbiol. 132:47–50
    [Google Scholar]
  17. Huser B. A., Wuhrmann K., Zehnder A. J. B. 1982; Methanothrix soehngenii gen. nov. sp. nov., a new acetotrophic non-hydrogen-oxidizing methane bacterium. Arch. Microbiol. 132:1–9
    [Google Scholar]
  18. Johnson J. L. 1981 Genetic characterization. 450–472 Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B.ed Manual of methods for general bacteriology American Society for Microbiology; Washington, D.C:
    [Google Scholar]
  19. Jones W. J., Leigh J. A., Mayer F., Woese C. R., Wolfe R. S. 1983; Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch. Microbiol. 136:254–261
    [Google Scholar]
  20. Jones W. J., Paynter M. J. B., Gupta R. 1983; Characterization of Methanococcus maripaludis sp. nov., a new methanogen isolated from salt marsh sediment. Arch. Microbiol. 135:91–97
    [Google Scholar]
  21. Kneifei H., Stetter K. O., Andreesen J. R., Weigel J., König H., Schoberth S. M. 1986; Distribution of polyamines in representative species of archaebacteria. Syst. Appl. Microbiol. 7:241–245
    [Google Scholar]
  22. König H. 1984; Isolation and characterization of Methanobacterium uliginosum sp. nov. from a marshy soil. Can. J. Microbiol. 30:1477–1481
    [Google Scholar]
  23. König K., Stetter K. O. 1982; Isolation and characterization of Methanolobus tindarius sp. nov., a coccoid methanogen growing only on methanol and methylamines. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 1 Orig. Reihe C 3:478–490
    [Google Scholar]
  24. Langworthy T. A. 1985 Lipids of archaebacteria. 459–497 Gunsalus I. C., Sokatch J. R., Ornston L. N., Woese C. R., Wolfe R. S.ed The bacteria 8 Academic Press, Inc.; New York:
    [Google Scholar]
  25. Langworthy T. A., Tornabene T. G., Holzer G. 1982; Lipids of archaebacteria. Zentralbl. Bakteriol. Mikrobiol. Hyg. Abt. 1 Orig. Reihe C 3:228–244
    [Google Scholar]
  26. Lauerer G., Kristjansson J. K., Langworthy T. A., König H., Stetter K. O. 1986; Methanothermus sociabilis sp. nov., a second species within the Methanothermaceae growing at 97°C. Syst. Appl. Microbiol. 8:100–105
    [Google Scholar]
  27. Liu Y., Boone D. R., Sleat R., Mah R. A. 1985; Methanosarcina mazei LYC, a new methanogenic isolate which produces a disaggregating enzyme. Appl. Environ. Microbiol. 49:608–613
    [Google Scholar]
  28. Macario A. J. L., Conway de Macario E. 1983; Antigenic fingerprinting of methanogenic bacteria with polyclonal antibody probes. Syst. Appl. Bacteriol. 4:451–458
    [Google Scholar]
  29. Mah R. A., Kuhn D. A. 1984; Transfer of the type species of the genus Methanococcus to the genus Methanosarcina, naming it Methanosarcina mazei (Barker 1936) comb. nov. et emend, and conservation of the genus Methanococcus (Approved Lists 1980) with Methanococcus vannielii (Approved Lists 1980) as the type species. Int. J. Syst. Bacteriol. 34:263265
    [Google Scholar]
  30. Mah R. A., Smith M. R., Baresi L. 1978; Studies on an acetate-fermenting strain of Methanosarcina. Appl. Environ. Microbiol. 35:1174–1184
    [Google Scholar]
  31. Mathrani I. M., Boone D. R., Mah R. A., Fox G. E., Lau P. P. 1988; Methanohalophilus zhilinae sp. nov., an alkaliphilic, halophilic, methylotrophic methanogen. Int. J. Syst. Bacteriol. 38:139–142
    [Google Scholar]
  32. Miller T. L., Wolin M. J. 1983; Oxidation of hydrogen and reduction of methanol to methane is the sole energy source for a methanogen isolated from human feces. J. Bacteriol. 153:1051–1055
    [Google Scholar]
  33. Miller T. L., Wolin M. J. 1985; Methanosphaera stadmaniae gen. nov., sp. nov.: a species that forms methane by reducing methanol with hydrogen. Arch. Microbiol. 141:116–122
    [Google Scholar]
  34. Mylroie R. L., Hungate R. E. 1954; Experiments on the methane bacteria in sludge. Can. J. Microbiol. 1:55–64
    [Google Scholar]
  35. Nishihara M., Koga Y. 1987; Extraction and composition of polar lipids from the archaebacterium, Methanobacterium thermoautotrophicum: effective extraction of tetraether lipids by an acidified solvent. J. Biochem. (Tokyo) 101:997–1005
    [Google Scholar]
  36. Nishihara M., Morii H., Koga Y. 1987; Structure determination of a quartet of novel tetraether lipids from Methanobacterium thermoautotrophicum. J. Biochem. (Tokyo) 101:10071015
    [Google Scholar]
  37. O’Farrell P. 1975; High resolution two-dimensional electrophoresis of proteins. J. Biol. Chern. 250:4007–4021
    [Google Scholar]
  38. Ollivier B. M., Mah R. A., Garcia J. L., Boone D. R. 1986; Isolation and characterization of Methanogenium bourgense sp. nov. Int. J. Syst. Bacteriol. 36:297–301
    [Google Scholar]
  39. Ollivier B. M., Mah R. A., Garcia J. L., Robinson R. 1985; Isolation and characterization of Methanogenium aggregans sp. nov. Int. J. Syst. Bacteriol. 35:127–130
    [Google Scholar]
  40. Osipov G. A., Shabanova E. A., Morozov O. V., El’-Registan G. I., Kozlova A. N., Zhilina T. N. 1985; Lipids of Methanosarcina vacuolata and Methanococcus halophilus. Microbiology (Engl. Transl. Mikrobiologiya) 54:514–519
    [Google Scholar]
  41. Patel G. B. 1984; Characterization and nutritional properties of Methanothrix concilii sp. nov., a mesophilic, aceticlastic methanogen. Can. J. Microbiol. 30:1383–1396
    [Google Scholar]
  42. Paterek J. R., Smith P. H. 1985; Isolation and characterization of a halophilic methanogen from Great Salt Lake. Appl. Environ. Microbiol. 50:877–881
    [Google Scholar]
  43. Paterek J. R., Smith P. H. 1988; Methanohalophilus mahii gen. nov., sp. nov., a methylotrophic halophilic methanogen. Int. J. Syst. Bacteriol. 38:122–123
    [Google Scholar]
  44. Paynter M. J. B., Hungate R. E. 1968; Characterization of Methanobacterium mobilis, sp. n., isolated from the bovine rumen. J. Bacteriol. 95:1943–1951
    [Google Scholar]
  45. Powell G. E. 1983; Interpreting gas kinetics of batch cultures. Biotechnol. Lett. 5:437–440
    [Google Scholar]
  46. Rivard C. J., Henson J. M., Thomas M. V., Smith P. H. 1983; Isolation and characterization of Methanomicrobium paynteri sp. nov., a mesophilic methanogen isolated from marine sediments. Appl. Environ. Microbiol. 46:484–490
    [Google Scholar]
  47. Rivard C. J., Smith P. H. 1982; Isolation and characterization of a thermophilic marine methanogenic bacterium, Methanogenium thermophilicum sp. nov. Int. J. Syst. Bacteriol. 32:430–436
    [Google Scholar]
  48. Romesser J. A., Wolfe R. S., Mayer F., Spiess E., Walther-Mauruschat A. 1979; Methanogenium, a new genus of marine methanogenic bacteria, and characterization of Methanogenium cariaci sp. nov. and Methanogenium marisnigri sp. nov. Arch. Microbiol. 121:147–153
    [Google Scholar]
  49. Scherer P., Sahm H. 1981; Effect of trace elements and vitamins on the growth of Methanosarcina barkeri. Acta Biotechnol. 1:57–65
    [Google Scholar]
  50. Selin Y. M., Harich B., Johnson J. L. 1983; Preparation of labeled nucleic acids (nick translation and iodination) for DNA homology and rRNA hybridization experiments. Curr. Microbiol. 8:127–132
    [Google Scholar]
  51. Smith P. H., Hungate R. E. 1958; Isolation and characterization of Methanobacterium ruminantium n. sp. J. Bacteriol. 75:713–718
    [Google Scholar]
  52. Sowers K. R., Baron S. F., Ferry J. G. 1984; Methanosarcina acetivorans sp. nov., an acetotrophic methane-producing bacterium isolated from marine sediments. Appl. Environ. Microbiol. 47:971–978
    [Google Scholar]
  53. Sowers K. R., Ferry J. G. 1983; Isolation and characterization of a methylotrophic marine methanogen, Methanococcoides methylutens gen. nov., sp. nov. Appl. Environ. Microbiol. 45:684–690
    [Google Scholar]
  54. Sowers K. R., Johnson J. L., Ferry J. G. 1984; Phylogenetic relationships among the methylotrophic methane-producing bacteria and emendation of the family Methanosarcinaceae. Int. J. Syst. Bacteriol. 34:444–450
    [Google Scholar]
  55. Stackebrandt E., Ludwig W., Fox G. E. 1985 16S ribosomal RNA oligonucleotide cataloguing. 75–107 Gottschalk G.ed Methods in microbiology 18 Academic Press, Inc.; New York:
    [Google Scholar]
  56. Stadtman T. C., Barker H. A. 1951; Studies on the methane fermentation. X. A new formate-decomposing bacterium, Methanococcus vannielii. J. Bacteriol. 62:269–280
    [Google Scholar]
  57. Stetter K. O., Thomm M., Winter J., Wildgruber G., Huber H., Zillig W., Janecovic D., König H., Palm P., Wunderl S. 1981; Methanothermus fervidus, sp. nov., a novel extremely thermophilic methanogen isolated from an Icelandic hot spring. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 1 Orig. Reihe C 2:166–178
    [Google Scholar]
  58. Taylor C. D., McBride B. C., Wolfe R. S., Bryant M. P. 1974; Coenzyme M, essential for growth of a rumen strain of Methanobacterium ruminantium. J. Bacteriol. 120:974–975
    [Google Scholar]
  59. Tornabene T. G., Langworthy T. A. 1979; Diphytanyl and dibiphytanyl glycerol ether lipids of methanogenic archaebacteria. Science 203:51–53
    [Google Scholar]
  60. van Brüggen J. J. A., Zwart K. B., Hermans J. G. F., van Hove E. M., Stumm C. K., Vogels G. D. 1986; Isolation and characterization of Methanoplanus endosymbiosus sp. nov., an endosymbiont of the marine sapropelic ciliate Metopus contortus Quennerstedt. Arch. Microbiol. 144:367–374
    [Google Scholar]
  61. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandier O., Krichevsky M. I., Moore L. H., Moore W. E. C. 1987; Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int. J. Syst. Bacteriol. 37:463–464
    [Google Scholar]
  62. Whitman W. B., Ankwanda E., Wolfe R. S. 1982; Nutrition and carbon metabolism of Methanococcus voltae. J. Bacteriol. 149:852–863
    [Google Scholar]
  63. Whitman W. B., Shieh J., Sohn S., Caras D. S., Premachandran U. 1986; Isolation and characterization of 22 mesophilic methanococci. Syst. Appl. Microbiol. 7:235–240
    [Google Scholar]
  64. Widdel F. 1986; Growth of methanogenic bacteria in pure culture with 2-propanol and other alcohols as hydrogen donors. Appl. Environ. Microbiol. 51:1056–1062
    [Google Scholar]
  65. Wildgruber G., Thomm M., König H., Ober K., Ricchiuto T., Stetter K. O. 1982; Methanoplanus limicola, a plateshaped methanogen representing a novel family, the Methanoplanaceae. Arch. Microbiol. 132:31–36
    [Google Scholar]
  66. Winter J., Lerp C., Zabel H.-P., Wildenauer F. X., König H., Schindler F. 1984; Methanobacterium wolfei, sp. nov., a new tungsten-requiring, thermophilic, autotrophic methanogen. Syst. Appl. Microbiol. 5:457–466
    [Google Scholar]
  67. Woese C. R. 1987; Bacterial evolution. Microbiol. Rev. 51:221271
    [Google Scholar]
  68. Worakit S., Boone D. R., Mah R. A., Abdel-Samie M.-E., El-Halwagi M. M. 1986; Methanobacterium alcaliphilum sp. nov., an H2-utilizing methanogen that grows at high pH values. Int. J. Syst. Bacteriol. 36:380–382
    [Google Scholar]
  69. Zabel H. P., König H., Winter J. 1984; Isolation and characterization of a new coccoid methanogen, Methanogenium tatii spec. nov. from a solfataric field on Mount Tatio. Arch. Microbiol. 137:308–315
    [Google Scholar]
  70. Zabel H. P., König H., Winter J. 1985; Emended description of Methanogenium thermophilicum, Rivard and Smith, and assignment of new isolates to this species. Syst. Appl. Microbiol. 6:72–78
    [Google Scholar]
  71. Zeikus J. G., Henning D. L. 1975; Methanobacterium arboriphilus sp. nov., an obligate anaerobe isolated from wetwood of living trees. Antonie van Leeuwenhoek J. Microbiol. Serol. 41:543–552
    [Google Scholar]
  72. Zeikus J. G., Wolfe R. S. 1972; Methanobacterium thermoautotrophicus sp. nov., an anaerobic, autotrophic, extreme thermophile. J. Bacteriol. 109:707–713
    [Google Scholar]
  73. Zellner G., Alten C., Stackebrandt E., Conway de Macarib E., Winter J. 1987; Isolation and characterization of Methanocorpusculum parvum, gen. nov., spec, nov., a new tungsten requiring, coccoid methanogen. Arch. Microbiol. 147:13–20
    [Google Scholar]
  74. Zhilina T. N. 1983; New obligate halophilic methane-producing bacterium. Microbiology (Engl. Transl. Mikrobiologiya) 52:290297
    [Google Scholar]
  75. Zhilina T. N., Ilarionov S. A. 1984; Isolation and comparative characteristics of methanogenic bacteria assimilating formate with the description of Methanobacterium thermoformicicum sp. nov. Mikrobiologiya 53:785–790
    [Google Scholar]
  76. Zhilina T. N., Zavarzin G. A. 1979; Comparative cytology of methanosarcinae and description of Methanosarcina vacuolata sp. nova. Microbiology (Engl. Transl. Mikrobiologiya) 48:223–228
    [Google Scholar]
  77. Zhilina T. N., Zavarzin G. A. 1987; Methanosarcina vacuolata—vaciiolated species of methanosarcinae. Int. J. Syst. Bacteriol. 37:281–283
    [Google Scholar]
  78. Zinder S. H., Mah R. A. 1979; Isolation and characterization of a thermophilic strain of Methanosarcina unable to use H2-CO2 for methanogenesis. Appl. Environ. Microbiol. 38:9961008
    [Google Scholar]
  79. Zinder S. H., Sowers K. R., Ferry J. G. 1985; Methanosarcina thermophila sp. nov., a thermophilic, acetotrophic methane-producing bacterium. Int. J. Syst. Bacteriol. 35:522523
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-38-2-212
Loading
/content/journal/ijsem/10.1099/00207713-38-2-212
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error