1887

Abstract

Bacteria which utilize the xenobiotic compounds chloridazon, antipyrin, and pyramidon as sole carbon sources were isolated from various soil samples. The 22 strains isolated are similar with respect to morphological, physiological, biochemical, serological, and genetic properties. These bacteria are aerobic gram-negative rods or coccal rods (0.7 to 1.0 by 1.0 to 2.0 μm) that occur singly, in pairs, or in short chains and are nonmotile and nonsporeforming. Physiological and biochemical characteristics and susceptibility to antibiotics were determined. The strains need vitamin B as a growth factor; they are catalase positive and weakly oxidase positive and show slight HS production. All of the other tests which we performed were negative. The nutritional spectrum is extraordinarily limited, with optimal growth on chloridazon, antipyrin, pyramidon, and -phenylalanine. Most sugars, alcohols, amino and carboxylic acids, and ordinary complex media are not utilized. The bacteria are osmotically sensitive. They are a serologically uniform group of organisms, which are harmless to rats and rabbits. Their guanine-plus-cytosine contents range between 65 and 68.5 mol%. The chloridazon-degrading bacteria are characterized as a new genus, , with a single species, . The type strain strain E (= DSM 1986), is not closely related to any other gram-negative bacterium, as shown by a 16S ribosomal ribonucleic acid partial sequence analysis. This organism is a member of group I of the purple nonsulfur bacteria, but is phylogenetically isolated in this group. is remotely related to , rhodopseudomonads, and . Like other members of this group, contains 2,3-diamino-2,3-dideoxy--glucose in its lipopolysaccharide. The murein equals a normal murein from a gram-negative bacterium. All citric acid cycle enzymes are detectable in .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-35-1-26
1985-01-01
2023-09-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/35/1/ijs-35-1-26.html?itemId=/content/journal/ijsem/10.1099/00207713-35-1-26&mimeType=html&fmt=ahah

References

  1. Ahamed N. M., Mayer H., Biebl H., Weckesser J. 1982; Lipopolysaccharide with 2,3-diamino-2,3-dideoxyglucose containing lipid A in Rhodopseudomonas sulfoviridis . FEMS Microbiol. Lett. 14:27–30
    [Google Scholar]
  2. Ballard R. W., Doudoroff M., Stanier R. Y. 1968; Taxonomy of the aerobic pseudomonads: Pseudomonas diminuta and P. vesiculare . J. Gen. Microbiol. 53:349–361
    [Google Scholar]
  3. Blecher H., Blecher R., Müller R., Lingens F. 1978; Isolierung und Charakterisierung Antipyrin-abbauender Bakterien. Z. Naturforsch. 33:120–123
    [Google Scholar]
  4. Blecher H., Blecher R., Wegst W., Eberspächer J., Lingens F. 1981; Bacterial degradation of aminopyrine. Xenobiotica 11:749–754
    [Google Scholar]
  5. Blobel F., Eberspächer J., Lingens F. 1976; Enzymatische Bildung von 2-Keto-4-hydroxyvaleriansäure mit Hilfe von Pyrazon-abbauenden Bakterien. Z. Naturforsch. Teil C 31:757
    [Google Scholar]
  6. Buchanan R. E., Gibbons N. E. (ed.). 1974 Bergey’s manual of determinative bacteriology, 8. The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  7. Buck R., Eberspächer J., Lingens F. 1979; Abbau und Biosynthese von l-Phenylalanin in Chloridazon-abbauenden Bakterien. Hoppe Seyler’s Z. Physiol. Chem. 360:957–969
    [Google Scholar]
  8. Burton K. 1956; A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem. J. 62:315–323
    [Google Scholar]
  9. Braun V., Sieglin U. 1970; The covalent murein-lipoprotein structure of the Escherichia coli cell wall. Eur. J. Biochem. 13:336–346
    [Google Scholar]
  10. Costerton J. W., Irvin R. T., Cheng K. J. 1981; The bacterial glycocalyx in nature and disease. Annu. Rev. Microbiol. 35:299–324
    [Google Scholar]
  11. Denhardt D. T. 1966; A membrane-filter technique for the detection of complementary DNA. Biochem. Biophys. Res. Commun. 23:641–646
    [Google Scholar]
  12. De Vos P., De Ley J. 1983; Intra- and intergeneric simlarities of Pseudomonas and Xanthomonas ribosomal ribonucleic acid cistrons. Int. J. Syst. Bacteriol. 33:487–509
    [Google Scholar]
  13. Drescher N., Otto S. 1969; Über den Abbau von 1-Phenyl-4-amino-5-chlor-pyridazon-6 (Pyrazon) im Boden. Z. Pfanzenkr. Pflanzenschutz 76:27–33
    [Google Scholar]
  14. Eberspächer J., Lingens F. 1978; Reinigung und Eigenschaften von zwei Chloridazondihydrodiol-Dehydrogenasen aus Chloridazon-abbauenden Bakterien. Hoppe Seyler’s Z. Physiol. Chem. 359:1323–1334
    [Google Scholar]
  15. Engvild K. C., Jensen H. L. 1969; Microbiological decomposition of the herbicide Pyrazon. Soil Biol. Biochem. 1:295–300
    [Google Scholar]
  16. Flossdorf J. 1983; A rapid method for the determination of the base composition of bacterial DNA. J. Microbiol. Methods 1:305–311
    [Google Scholar]
  17. Frank R., Switzer C. M. 1969; Behaviour of Pyrazon in soil. Weed Sei. 17:323–326
    [Google Scholar]
  18. Fröhner C., Oltmanns O., Lingens F. 1970; Isolierung und Charakterisierung Pyrazon-abbauender Bakterien. Arch. Mikrobiol. 74:82–89
    [Google Scholar]
  19. Gibson J., Stackebrandt E., Zahlen L. B., Gupta R., Woese C. R. 1979; A phylogenetic analysis of purple photosynthetic bacteria. Curr. Microbiol. 3:59–64
    [Google Scholar]
  20. Goebel W., Schrempf H. 1972; Isolation of minicircular deoxyribonucleic acids from wild strains of Escherichia coli and their relationship to other plasmids. J. Bacteriol. 111:696–704
    [Google Scholar]
  21. Kaiser A., Classen H.-G., Eberspächer J., Lingens F. 1981; Acute toxicity testing of some herbicides-, alcaloids-, and antibiotics-metabolizing soil bacteria in the rat. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 1 Orig. Reihe B 173:173–179
    [Google Scholar]
  22. Keller B., Keller E., Lingens F. 1982; Arogenate (pretyrosine) as an obligatory intermediate of the biosynthesis of l-tyrosine in chloridazon-degrading bacteria. FEMS Microbiol. Lett. 13:121–123
    [Google Scholar]
  23. Kreis M., Eberspächer J., Lingens F. 1981; Detection and characterization of plasmids in chloridazon and antipyrin degrading bacteria. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 1 Orig. Reihe C 2:45–60
    [Google Scholar]
  24. Lautrop H. 1974; Acinetobacter. 436–438 Buchanan R. E., Gibbons N. E. Bergey’s manual of determinative bacteriology, 8. The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  25. Layh G., Böhm R., Eberspächer J., Lingens F. 1983; Serological studies on chloridazon-degrading bacteria. Syst. Appl. Microbiol. 4:459–469
    [Google Scholar]
  26. Layh G., Eberspächer J., Lingens F. 1982; Rhodanese in chloridazon-degrading bacteria. FEMS Microbiol. Lett. 15:23–26
    [Google Scholar]
  27. Leifson E., Hugh R. 1954; A new type of polar monotrichous flagellation. J. Gen. Microbiol. 10:68–70
    [Google Scholar]
  28. Lingens F., Blecher R., Blecher H., Koch U. 1977; Isolierung Chloridazon-abbauender Bakterien aus ostafrikanischen Bodenproben (Kenia). Z. Pflanzenkr. Pflanzenschutz 84:684–690
    [Google Scholar]
  29. Lingens F., Keller E. 1983; Zur Biosynthese von Phenylalanin und Tyrosin. Arogensäure, ein neues Zwischenprodukt. Naturwissenschaften 70:115–118
    [Google Scholar]
  30. Lowenstein J. 1969 Methods in enzymology13 Academic Press, Inc.; New York:
    [Google Scholar]
  31. Ludwig W., Eberspächer J., Lingens F., Stackebrandt E. 1984; 16S ribosomal RNA studies on the relationship of a chloridazon-degrading gram-negative eubacterium. Syst. Appl. Microbiol. 5:241–246
    [Google Scholar]
  32. Mayer H., Bock E., Weckesser J. 1983; 2,3-Diamino-2,3-dideoxyglucose containing lipid A in the Nitrobacter strain X14. FEMS Microbiol. Lett. 17:93–96
    [Google Scholar]
  33. Mötzung T. 1983; Uber das Vorkommen von Plasmiden in Chloridazon-abbauenden Bakterien aus australischer Erde. Diplomarbeit, Hohenheim; Federal Republic of Germany:
    [Google Scholar]
  34. Müller R., Haug S., Eberspächer J., Lingens F. 1977; Catechol-2,3-Dioxygenaseaus Pyrazon-abbauenden Bakterien. Hoppe Seyler’s Z. Physiol. Chem. 358:797–805
    [Google Scholar]
  35. Müller R., Lingens F. 1980; Enzymatische Bildung und Isolierung von 2-Hydroxymuconsäure, ein Metabolit im bakteriellen Abbau des Herbizids Chloridazon. Z. Naturforsch. Teil C 35:346–347
    [Google Scholar]
  36. Roppel J., Mayer H., Weckesser J. 1975; Identification of a 2,3-diamino-2,3-dideoxyhexose in the lipid A component of lipopolysaccharides of Rhodopseudomonas viridis and Rhodo-pseudomonas palustris . Carbohydr. Res. 40:31–40
    [Google Scholar]
  37. Sauber K., Fröhner C., Rosenberg G., Eberspächer J., Lingens F. 1977; Purification and properties of pyrazon dioxygenase from pyrazon-degrading bacteria. Eur. J. Biochem. 74:89–97
    [Google Scholar]
  38. Sauber K., Müller R., Keller E., Eberspächer J., Lingens F. 1977; Abbau von Antipyrin durch Pyrazon-abbauende Bakterien. Z. Naturforsch 32:557–562
    [Google Scholar]
  39. Schmitt S., Müller R., Lingens F. 1984; Chloridazoncatechol dioxygenases, a distinct group of meta-cleaving enzymes. Hoppe Seyler’s Z. Physiol. Chem. 365:143–150
    [Google Scholar]
  40. Tittmann U., Wegst W., Blecher R., Lingens F. 1980; Abbau von trans-Zimtsäure durch Chloridazon-abbauende Bakterien. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 1 Orig. Reihe C 1:124–131
    [Google Scholar]
  41. Vandenbergh P. A., Bawdon R. E., Berk R. S. 1979; Rapid test for determining the intracellular rhodanese activity of various bacteria. Int. J. Syst. Bacteriol. 29:339–344
    [Google Scholar]
  42. Wegst W., Tittmann U., Eberspächer J., Lingens F. 1981; Bacterial conversion of phenylalanine and aromatic carboxylic acids into dihydrodiols. Biochem. J. 194:679–684
    [Google Scholar]
  43. Weisshaar R., Lingens F. 1983; The lipopolysaccharide of a chloridazon-degrading bacterium. Eur. J. Biochem. 137:155–161
    [Google Scholar]
  44. Weitzman P. D. J. 1981; Unity and diversity in some bacterial citric acid-cycle enzymes. Adv. Microb. Physiol. 22:185–244
    [Google Scholar]
  45. Wilkinson S. G., Taylor D. P. 1978; Occurrence of 2,3-diamino-2,3-dideoxy-d-glucose in lipid A from lipopolysaccharide of Pseudomonas diminuta . J. Gen. Microbiol. 109:367–370
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-35-1-26
Loading
/content/journal/ijsem/10.1099/00207713-35-1-26
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error