1887

Abstract

Deoxyribonucleic acid (DNA) was extracted and purified from three isolates of , representing serotypes A and D, and from two isolates of , representing serotypes B and C. Portions of each DNA pool were labeled in vitro by nick translation. Thermal elution profiles were determined and were used to calculate the thermal elution midpoint temperature and moles percent guanine-plus-cytosine content for each DNA. The thermal elution midpoint temperatures of the five DNAs ranged from 91.3 to 92.9°C, and the corresponding estimated contents ranged from 53.4 to 57.2 mol%. Hybridizations were performed with all possible pairs of homologous and heterologous DNAs. The DNAs of serotypes A and D of demonstrated relatedness values of 87.7 to 93.5%. DNAs of serotypes B and C of showed 88.5% relatedness. Hybridizations of DNAs of with those of , however, yielded relatedness values of only 55.2 to 63%, indicating that these DNAs are significantly different. Moreover, thermal elution studies revealed substantial base mismatching in heteroduplexes formed between DNAs of and . These data support previous conclusions suggesting that and are closely related but different species.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-31-1-97
1981-01-01
2022-06-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/31/1/ijs-31-1-97.html?itemId=/content/journal/ijsem/10.1099/00207713-31-1-97&mimeType=html&fmt=ahah

References

  1. Ailing D. W. 1967; Tests of relatedness. Biometrika 54:459–469
    [Google Scholar]
  2. Aulakh G. S., Tully J. G., Barile M. F. 1979; Differentiation among some acholeplasmas by nucleic acid homology. Curr. Microbiol 2:91–94
    [Google Scholar]
  3. Bennett J. E., Kwon-Chung K. J., Howard D. H. 1977; Epidemiologic differences among serotypes of Cryptococcus neoformans. . Am. J. Epidemiol 105:582–586
    [Google Scholar]
  4. Bennett J. E., Kwon-Chung K. J., Theodore T. S. 1978; Biochemical differences between serotypes of Cryptococcus neoformans. . Sabouraudia 16:167–174
    [Google Scholar]
  5. Brenner D. J., Fanning G. R., Rake A., Johnson K. E. 1969; A batch procedure for thermal elution of DNA from hydroxylapatite. Anal. Biochem 28:445–459
    [Google Scholar]
  6. Britten R. J., Graham D. E., Neufeld D. 1974; Analysis of repeating DNA sequences by reassociation. Methods Enzymol 29E:363–419
    [Google Scholar]
  7. Britten R. J., Kohne D. E. 1968; Repeated sequences in DNA. Science 161:529–540
    [Google Scholar]
  8. Britten R. J., Povich M., Smith J. 1968; A new method for DNA purification. p. 400–403 In Annual report of the Carnegie Institution Carnegie Institution; Washington, D.C:
    [Google Scholar]
  9. Difco Laboratories 1953; Difco manual of dehydrated culture media and reagents for microbiological and clinical laboratory procedures. , 9th ed.. p 256 Difco Laboratories; Detroit, Mich:
  10. Erke K. H., Schneidau J. D. 1973; Relationship of some Cryptococcus neoformans hypha-forming strains to standard strains and to other species of yeasts as determined by deoxyribonucleic acid base ratios and homologies. Infect. Immun 7:941–948
    [Google Scholar]
  11. Fuson G. B., Price C. W., Phaff H. J. 1979; Deoxyribonucleic acid sequence relatedness among some members of the yeast genus Hansenula. . Int. J. Syst. Bacteriol 29:64–69
    [Google Scholar]
  12. Fuson G. B., Price C. W., Phaff H. J. 1980; Deoxyribonucleic acid base sequence relatedness among strains of Pichia ohmeri that produce dimorphic ascospores. Int. J. Syst. Bacteriol 30:217–219
    [Google Scholar]
  13. Kelly R. B., Cozzrelli N. R., Deutscher M. P., Lehman I. R., Komberg A. 1970; Enzymatic synthesis of deoxyribonucleic acids. J. Biol. Chem 245:39–45
    [Google Scholar]
  14. Kurtzman C. P., Smiley M. J., Johnson C. J. 1980; Emendation of the genus Issatchenkia Kudriavzev and comparison of species by deoxyribonucleic acid reassocation, mating reaction, and ascospore ultrastructure. Int. J. Syst. Bacteriol 30:503–513
    [Google Scholar]
  15. Kwon-Chung K. J. 1975; A new genus Filobasidiella, the perfect state of Cryptococcus neoformans. . Mycologia 67:1197–1200
    [Google Scholar]
  16. Kwon-Chung K. J. 1976; A new species of Filobasidiella, the sexual state of Cryptococcus neoformans B and C serotypes. Mycologia 68:942–946
    [Google Scholar]
  17. Kwon-Chung K. J. 1979; Serotypes, epidemiology, and the sexual life cycle of Cryptococcus neoformans, . p 110 In 2nd Ian Murray lecture, University of Birmingham. British Society of Mycopathology;
    [Google Scholar]
  18. Kwon-Chung K. J., Bennett J. E., Theodore T. S. 1978; Cryptococcus bacillisporus sp. nov.: serotype B-C of Cryptococcus neoformans. . Int. J. Syst. Bacteriol 28:616–620
    [Google Scholar]
  19. Mandel M. 1962; The interaction of spermine and native deoxyribonucleic acid. J. Mol. Biol 5:435–441
    [Google Scholar]
  20. Mandel M., Marmur J. 1968; Use of ultraviolet absorbance—temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12b:195
    [Google Scholar]
  21. Maniatis T., Jeffrey A., Kleid D. G. 1975; Nucleotide sequence of the rightward operator of phage. Proc. Natl. Acad. Sci. U.S.A 72:1184–1188
    [Google Scholar]
  22. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol 5:109–118
    [Google Scholar]
  23. Martinson H. G. 1973; The nucleic acid-hydroxylapatite interaction. II. Phase transitions in the deoxyribonucleic acid-hydroxylapatite system. Biochemistry 12:145–150
    [Google Scholar]
  24. Martinson H. G., Wagenaar E. B. 1977; Thermal elution chromatography of nucleic acids on hydroxylapatite. Biochim. Biophys. Acta 474:445–455
    [Google Scholar]
  25. Meyer S. A., Phaff H. J. 1969; Deoxyribonucleic acid base composition in yeasts. J. Bacteriol 97:52–56
    [Google Scholar]
  26. Meyer S. A., Smith M. T., Simione F. P. Jr 1978; Systematics of Hanseniaspora Zikes and Kloeckera Janke. Antonie van Leeuwenhoek J. Microbiol. Serol 44:79–96
    [Google Scholar]
  27. Morrison J. M., Keir H. M., Subak-Sharpe H., Crawford L. V. 1967; Nearest neighbour base sequence analysis of the deoxyribonucleic acids of a further three mammalian viruses: simian virus 40, human papilloma virus and adenovirus type 2.. J. Gen. Virol 1:101–108
    [Google Scholar]
  28. Nakase T., Komagata K. 1971; Significance of DNA base composition in the classification of the yeast genera Cryptococcus and Rhodotorula. . J. Gen. Appl. Microbiol 17:121–130
    [Google Scholar]
  29. Pina M., Green M. 1965; Biochemical studies on adenovirus multiplication. IX. Chemical and base com-position analysis of 28 human adenoviruses. Proc. Natl. Acad. Sci. U.S.A 54:547–554
    [Google Scholar]
  30. Polacheck I., Kwon-Chung K. J. 1980; Creatinine metabolism in Cryptococcus neoformans and Cryptococcus bacillisporus. . J. Bacteriol 142:15–20
    [Google Scholar]
  31. Price C. W., Fuson G. B., Phaff H. J. 1978; Genome comparison in yeast systematics: delimitation of species within the genera Schwanniomyces, Saccharomyces, Debaryomyces and Pichia. . Microbiol. Rev 42:161–193
    [Google Scholar]
  32. Storck R., Alexopoulos C. J., Phaff H. J. 1969; Nucleotide composition of deoxyribonucleic acid of some species of Cryptococcus, Rhodotorula, and Sporobolomyces. . J. Bacteriol 98:1069–1072
    [Google Scholar]
  33. Wilson D. E., Bennett J. E., Bailey J. W. 1968; Serologic grouping of Cryptococcus neoformans. . Proc. Soc. Exp. Biol. Med 127:820–823
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-31-1-97
Loading
/content/journal/ijsem/10.1099/00207713-31-1-97
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error