1887

Abstract

Bacterial resistance to antibiotics has been long recognized as a priority to address for human health. Among all micro-organisms, the so-called multi-drug resistant (MDR) bacteria, which are resistant to most, if not all drugs in our current arsenal, are particularly worrisome. The World Health Organization has prioritized the ESKAPE (, , , , and species) pathogens, which include four Gram-negative bacterial species. In these bacteria, active extrusion of antimicrobial compounds out of the cell by means of ‘molecular guns’ known as efflux pumps is a main determinant of MDR phenotypes. The resistance-nodulation-cell division (RND) superfamily of efflux pumps connecting the inner and outer membrane in Gram-negative bacteria is crucial to the onset of MDR and virulence, as well as biofilm formation. Thus, understanding the molecular basis of the interaction of antibiotics and inhibitors with these pumps is key to the design of more effective therapeutics. With the aim to contribute to this challenge, and complement and inspire experimental research, studies on RND efflux pumps have flourished in recent decades. Here, we review a selection of such investigations addressing the main determinants behind the polyspecificity of these pumps, the mechanisms of substrate recognition, transport and inhibition, as well as the relevance of their assembly for proper functioning, and the role of protein–lipid interactions. The journey will end with a perspective on the role of computer simulations in addressing the challenges posed by these beautifully complex machineries and in supporting the fight against the spread of MDR bacteria.

Funding
This study was supported by the:
  • Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases (Award R01AI136799)
    • Principle Award Recipient: PaoloRuggerone
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. The Microbiology Society waived the open access fees for this article.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001307
2023-03-27
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/169/3/mic001307.html?itemId=/content/journal/micro/10.1099/mic.0.001307&mimeType=html&fmt=ahah

References

  1. Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 2022; 399:629–655 [View Article]
    [Google Scholar]
  2. Blair JMA, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJV. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol 2015; 13:42–51 [View Article] [PubMed]
    [Google Scholar]
  3. Blair JMA, Richmond GE, Piddock LJV. Multidrug efflux pumps in Gram-negative bacteria and their role in antibiotic resistance. Future Microbiol 2014; 9:1165–1177 [View Article] [PubMed]
    [Google Scholar]
  4. Huang L, Wu C, Gao H, Xu C, Dai M et al. Bacterial multidrug efflux pumps at the frontline of antimicrobial resistance: an overview. Antibiotics (Basel) 2022; 11:520 [View Article]
    [Google Scholar]
  5. Du D, Wang-Kan X, Neuberger A, van Veen HW, Pos KM et al. Multidrug efflux pumps: structure, function and regulation. Nat Rev Microbiol 2018; 16:523–539 [View Article] [PubMed]
    [Google Scholar]
  6. Pendleton JN, Gorman SP, Gilmore BF. Clinical relevance of the ESKAPE pathogens. Expert Rev Anti Infect Ther 2013; 11:297–308 [View Article] [PubMed]
    [Google Scholar]
  7. De Oliveira DMP, Forde BM, Kidd TJ, Harris PNA, Schembri MA et al. Antimicrobial resistance in ESKAPE pathogens. Clin Microbiol Rev 2020; 33:e00181-19 [View Article]
    [Google Scholar]
  8. Li X-Z, Plésiat P, Nikaido H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev 2015; 28:337–418 [View Article] [PubMed]
    [Google Scholar]
  9. Hancock REW. Resistance mechanisms in Pseudomonas aeruginosa and other nonfermentative gram-negative bacteria. Clin Infect Dis 1998; 27 Suppl 1:S93–9 [View Article]
    [Google Scholar]
  10. Colclough AL, Alav I, Whittle EE, Pugh HL, Darby EM et al. RND efflux pumps in Gram-negative bacteria; regulation, structure and role in antibiotic resistance. Future Microbiol 2020; 15:143–157 [View Article] [PubMed]
    [Google Scholar]
  11. Nikaido H. RND transporters in the living world. Res Microbiol 2018; 169:363–371 [View Article] [PubMed]
    [Google Scholar]
  12. Alav I, Kobylka J, Kuth MS, Pos KM, Picard M et al. Structure, assembly, and function of tripartite efflux and type 1 secretion systems in Gram-negative bacteria. Chem Rev 2021; 121:5479–5596 [View Article]
    [Google Scholar]
  13. Nikaido H, Pagès J-M. Broad-specificity efflux pumps and their role in multidrug resistance of Gram-negative bacteria. FEMS Microbiol Rev 2012; 36:340–363 [View Article] [PubMed]
    [Google Scholar]
  14. Klenotic PA, Moseng MA, Morgan CE, Yu EW. Structural and functional diversity of resistance-nodulation-cell division transporters. Chem Rev 2021; 121:5378–5416 [View Article]
    [Google Scholar]
  15. Neuberger A, Du D, Luisi BF. Structure and mechanism of bacterial tripartite efflux pumps. Res Microbiol 2018; 169:401–413 [View Article] [PubMed]
    [Google Scholar]
  16. Ruggerone P, Murakami S, Pos KM, Vargiu AV. RND efflux pumps: structural information translated into function and inhibition mechanisms. Curr Top Med Chem 2013; 13:3079–3100 [View Article] [PubMed]
    [Google Scholar]
  17. Chitsaz M, Brown MH. The role played by drug efflux pumps in bacterial multidrug resistance. Essays Biochem 2017; 61:127–139 [View Article] [PubMed]
    [Google Scholar]
  18. Zgurskaya HI, Adamiak JW, Leus IV. Making sense of drug-efflux transporters in the physiological environment. Curr Opin Microbiol 2022; 69:102179 [View Article] [PubMed]
    [Google Scholar]
  19. Andersen JL, He G-X, Kakarla P, K C R, Kumar S et al. Multidrug efflux pumps from Enterobacteriaceae, Vibrio cholerae and Staphylococcus aureus bacterial food pathogens. Int J Environ Res Public Health 2015; 12:1487–1547 [View Article]
    [Google Scholar]
  20. Tal N, Schuldiner S. A coordinated network of transporters with overlapping specificities provides a robust survival strategy. Proc Natl Acad Sci U S A 2009; 106:9051–9056 [View Article]
    [Google Scholar]
  21. Kobylka J, Kuth MS, Müller RT, Geertsma ER, Pos KM. AcrB: a mean, keen, drug efflux machine. Ann N Y Acad Sci 2020; 1459:38–68 [View Article] [PubMed]
    [Google Scholar]
  22. Du D, van Veen HW, Murakami S, Pos KM, Luisi BF. Structure, mechanism and cooperation of bacterial multidrug transporters. Curr Opin Struct Biol 2015; 33:76–91 [View Article] [PubMed]
    [Google Scholar]
  23. Yamaguchi A, Nakashima R, Sakurai K. Structural basis of RND-type multidrug exporters. Front Microbiol 2015; 6:327 [View Article]
    [Google Scholar]
  24. Glavier M, Puvanendran D, Salvador D, Decossas M, Phan G et al. Antibiotic export by MexB multidrug efflux transporter is allosterically controlled by a MexA-OprM chaperone-like complex. Nat Commun 2020; 11:4948 [View Article] [PubMed]
    [Google Scholar]
  25. Eicher T, Seeger MA, Anselmi C, Zhou W, Brandstätter L et al. Coupling of remote alternating-access transport mechanisms for protons and substrates in the multidrug efflux pump AcrB. Elife 2014; 3:e03145 [View Article] [PubMed]
    [Google Scholar]
  26. Wang Z, Fan G, Hryc CF, Blaza JN, Serysheva II et al. An allosteric transport mechanism for the AcrAB-TolC multidrug efflux pump. Elife 2017; 6:e24905 [View Article] [PubMed]
    [Google Scholar]
  27. Murakami S, Nakashima R, Yamashita E, Matsumoto T, Yamaguchi A. Crystal structures of a multidrug transporter reveal a functionally rotating mechanism. Nature 2006; 443:173–179 [View Article] [PubMed]
    [Google Scholar]
  28. Seeger MA, Schiefner A, Eicher T, Verrey F, Diederichs K et al. Structural asymmetry of AcrB trimer suggests a peristaltic pump mechanism. Science 2006; 313:1295–1298 [View Article] [PubMed]
    [Google Scholar]
  29. Sennhauser G, Amstutz P, Briand C, Storchenegger O, Grütter MG. Drug export pathway of multidrug exporter AcrB revealed by DARP in inhibitors. PLoS Biol 2007; 5:e7 [View Article]
    [Google Scholar]
  30. Tam H-K, Foong WE, Oswald C, Herrmann A, Zeng H et al. Allosteric drug transport mechanism of multidrug transporter AcrB. Nat Commun 2021; 12:3889 [View Article] [PubMed]
    [Google Scholar]
  31. Zgurskaya HI, Malloci G, Chandar B, Vargiu AV, Ruggerone P. Bacterial efflux transporters’ polyspecificity - a gift and a curse?. Curr Opin Microbiol 2021; 61:115–123 [View Article] [PubMed]
    [Google Scholar]
  32. Takatsuka Y, Chen C, Nikaido H. Mechanism of recognition of compounds of diverse structures by the multidrug efflux pump AcrB of Escherichia coli. Proc Natl Acad Sci U S A 2010; 107:6559–6565 [View Article]
    [Google Scholar]
  33. Nakashima R, Sakurai K, Yamasaki S, Hayashi K, Nagata C et al. Structural basis for the inhibition of bacterial multidrug exporters. Nature 2013; 500:102–106 [View Article] [PubMed]
    [Google Scholar]
  34. Sjuts H, Vargiu AV, Kwasny SM, Nguyen ST, Kim H-S et al. Molecular basis for inhibition of AcrB multidrug efflux pump by novel and powerful pyranopyridine derivatives. Proc Natl Acad Sci U S A 2016; 113:3509–3514 [View Article] [PubMed]
    [Google Scholar]
  35. Eicher T, Cha H, Seeger MA, Brandstätter L, El-Delik J et al. Transport of drugs by the multidrug transporter AcrB involves an access and a deep binding pocket that are separated by a switch-loop. Proc Natl Acad Sci U S A 2012; 109:5687–5692 [View Article] [PubMed]
    [Google Scholar]
  36. Vargiu AV, Nikaido H. Multidrug binding properties of the AcrB efflux pump characterized by molecular dynamics simulations. Proc Natl Acad Sci U S A 2012; 109:20637–20642 [View Article] [PubMed]
    [Google Scholar]
  37. Müller RT, Travers T, Cha H-J, Phillips JL, Gnanakaran S et al. Switch loop flexibility affects substrate transport of the AcrB efflux pump. J Mol Biol 2017; 429:3863–3874 [View Article]
    [Google Scholar]
  38. Oswald C, Tam H-K, Pos KM. Transport of lipophilic carboxylates is mediated by transmembrane helix 2 in multidrug transporter AcrB. Nat Commun 2016; 7:13819 [View Article] [PubMed]
    [Google Scholar]
  39. Tam H-K, Malviya VN, Foong W-E, Herrmann A, Malloci G et al. Binding and transport of carboxylated drugs by the multidrug transporter AcrB. J Mol Biol 2020; 432:861–877 [View Article]
    [Google Scholar]
  40. Nakashima R, Sakurai K, Yamasaki S, Nishino K, Yamaguchi A. Structures of the multidrug exporter AcrB reveal a proximal multisite drug-binding pocket. Nature 2011; 480:565–569 [View Article] [PubMed]
    [Google Scholar]
  41. Zwama M, Yamasaki S, Nakashima R, Sakurai K, Nishino K et al. Multiple entry pathways within the efflux transporter AcrB contribute to multidrug recognition. Nat Commun 2018; 9:124 [View Article]
    [Google Scholar]
  42. Vargiu AV, Ramaswamy VK, Malloci G, Malvacio I, Atzori A et al. Computer simulations of the activity of RND efflux pumps. Res Microbiol 2018; 169:384–392 [View Article]
    [Google Scholar]
  43. Ramaswamy VK, Vargiu AV, Malloci G, Dreier J, Ruggerone P. Molecular rationale behind the differential substrate specificity of bacterial RND multi-drug transporters. Sci Rep 2017; 7:8075 [View Article]
    [Google Scholar]
  44. Im W, Khalid S. Molecular simulations of Gram-negative bacterial membranes come of age. Annu Rev Phys Chem 2020; 71:171–188 [View Article]
    [Google Scholar]
  45. Jamshidi S, Sutton JM, Rahman KM. An overview of bacterial efflux pumps and computational approaches to study efflux pump inhibitors. Future Med Chem 2016; 8:195–210 [View Article] [PubMed]
    [Google Scholar]
  46. Laws M, Shaaban A, Rahman KM. Antibiotic resistance breakers: current approaches and future directions. FEMS Microbiol Rev 2019; 43:490–516 [View Article] [PubMed]
    [Google Scholar]
  47. Gupta MN, Alam A, Hasnain SE. Protein promiscuity in drug discovery, drug-repurposing and antibiotic resistance. Biochimie 2020; 175:50–57 [View Article] [PubMed]
    [Google Scholar]
  48. Zwama M, Nishino K. Ever-adapting RND efflux pumps in Gram-negative multidrug-resistant pathogens: a race against time. Antibiotics (Basel) 2021; 10:774 [View Article]
    [Google Scholar]
  49. Piddock LJV. Multidrug-resistance efflux pumps - not just for resistance. Nat Rev Microbiol 2006; 4:629–636 [View Article] [PubMed]
    [Google Scholar]
  50. Lewinson O, Adler J, Sigal N, Bibi E. Promiscuity in multidrug recognition and transport: the bacterial MFS Mdr transporters. Mol Microbiol 2006; 61:277–284 [View Article] [PubMed]
    [Google Scholar]
  51. Nishino K, Yamaguchi A. Analysis of a complete library of putative drug transporter genes in Escherichia coli. J Bacteriol 2001; 183:5803–5812 [View Article]
    [Google Scholar]
  52. Visalli MA, Murphy E, Projan SJ, Bradford PA. AcrAB multidrug efflux pump is associated with reduced levels of susceptibility to tigecycline (GAR-936) in Proteus mirabilis. Antimicrob Agents Chemother 2003; 47:665–669 [View Article]
    [Google Scholar]
  53. Lister IM, Raftery C, Mecsas J, Levy SB. Yersinia pestis AcrAB-TolC in antibiotic resistance and virulence. Antimicrob Agents Chemother 2012; 56:1120–1123 [View Article] [PubMed]
    [Google Scholar]
  54. Baucheron S, Imberechts H, Chaslus-Dancla E, Cloeckaert A. The AcrB multidrug transporter plays a major role in high-level fluoroquinolone resistance in Salmonella enterica serovar typhimurium phage type DT204. Microb Drug Resist 2002; 8:281–289 [View Article]
    [Google Scholar]
  55. Baucheron S, Tyler S, Boyd D, Mulvey MR, Chaslus-Dancla E et al. AcrAB-TolC directs efflux-mediated multidrug resistance in Salmonella enterica serovar typhimurium DT104. Antimicrob Agents Chemother 2004; 48:3729–3735 [View Article]
    [Google Scholar]
  56. Sánchez L, Pan W, Viñas M, Nikaido H. The acrAB homolog of Haemophilus influenzae codes for a functional multidrug efflux pump. J Bacteriol 1997; 179:6855–6857 [View Article] [PubMed]
    [Google Scholar]
  57. Gervasoni S, Malloci G, Bosin A, Vargiu AV, Zgurskaya HI et al. AB-DB: Force-Field parameters, MD trajectories, QM-based data, and descriptors of antimicrobials. Sci Data 2022; 9:148 [View Article]
    [Google Scholar]
  58. Kobayashi N, Tamura N, van Veen HW, Yamaguchi A, Murakami S. β-lactam selectivity of multidrug transporters AcrB and AcrD resides in the proximal binding pocket. J Biol Chem 2014; 289:10680–10690 [View Article]
    [Google Scholar]
  59. Ramaswamy VK, Vargiu AV, Malloci G, Dreier J, Ruggerone P. Molecular determinants of the promiscuity of MexB and MexY multidrug transporters of Pseudomonas aeruginosa. Front Microbiol 2018; 9:1144 [View Article]
    [Google Scholar]
  60. Schuster S, Vavra M, Kern WV. Evidence of a substrate-discriminating entrance channel in the lower porter domain of the multidrug resistance efflux pump AcrB. Antimicrob Agents Chemother 2016; 60:4315–4323 [View Article]
    [Google Scholar]
  61. Husain F, Nikaido H. Substrate path in the AcrB multidrug efflux pump of Escherichia coli. Mol Microbiol 2010; 78:320–330 [View Article]
    [Google Scholar]
  62. Husain F, Bikhchandani M, Nikaido H. Vestibules are part of the substrate path in the multidrug efflux transporter AcrB of Escherichia coli. J Bacteriol 2011; 193:5847–5849 [View Article]
    [Google Scholar]
  63. Imai T, Miyashita N, Sugita Y, Kovalenko A, Hirata F et al. Functionality mapping on internal surfaces of multidrug transporter AcrB based on molecular theory of solvation: implications for drug efflux pathway. J Phys Chem B 2011; 115:8288–8295 [View Article] [PubMed]
    [Google Scholar]
  64. Marsh L. Strong ligand-protein interactions derived from diffuse ligand interactions with loose binding sites. Biomed Res Int 2015; 2015:746980 [View Article]
    [Google Scholar]
  65. Ababou A, Koronakis V. Structures of gate loop variants of the AcrB drug efflux pump bound by erythromycin substrate. PLoS One 2016; 11:e0159154 [View Article]
    [Google Scholar]
  66. Ornik-Cha A, Wilhelm J, Kobylka J, Sjuts H, Vargiu AV et al. Structural and functional analysis of the promiscuous AcrB and AdeB efflux pumps suggests different drug binding mechanisms. Nat Commun 2021; 12:6919 [View Article] [PubMed]
    [Google Scholar]
  67. Malvacio I, Buonfiglio R, D’Atanasio N, Serra G, Bosin A et al. Molecular basis for the different interactions of congeneric substrates with the polyspecific transporter AcrB. Biochim Biophys Acta Biomembr 2019; 1861:1397–1408 [View Article]
    [Google Scholar]
  68. Gervasoni S, Malloci G, Bosin A, Vargiu AV, Zgurskaya HI et al. Recognition of quinolone antibiotics by the multidrug efflux transporter MexB of Pseudomonas aeruginosa. Phys Chem Chem Phys 2022; 24:16566–16575 [View Article] [PubMed]
    [Google Scholar]
  69. Catte A, K Ramaswamy V, Vargiu AV, Malloci G, Bosin A et al. Common recognition topology of mex transporters of Pseudomonas aeruginosa revealed by molecular modelling. Front Pharmacol 2022; 13:1021916 [View Article] [PubMed]
    [Google Scholar]
  70. Lim SP, Nikaido H. Kinetic parameters of efflux of penicillins by the multidrug efflux transporter AcrAB-TolC of Escherichia coli. Antimicrob Agents Chemother 2010; 54:1800–1806 [View Article]
    [Google Scholar]
  71. Blair JMA, Piddock LJV. How to measure export via bacterial multidrug resistance efflux pumps. mBio 2016; 7:e00840-16 [View Article]
    [Google Scholar]
  72. Atzori A, Malloci G, Prajapati JD, Basciu A, Bosin A et al. Molecular interactions of cephalosporins with the deep binding pocket of the RND transporter AcrB. J Phys Chem B 2019; 123:4625–4635 [View Article]
    [Google Scholar]
  73. Atzori A, Malloci G, Cardamone F, Bosin A, Vargiu AV et al. Molecular interactions of carbapenem antibiotics with the multidrug efflux transporter AcrB of Escherichia coli. Int J Mol Sci 2020; 21:860 [View Article]
    [Google Scholar]
  74. Collu F, Vargiu AV, Dreier J, Cascella M, Ruggerone P. Recognition of imipenem and meropenem by the RND-transporter MexB studied by computer simulations. J Am Chem Soc 2012; 134:19146–19158 [View Article] [PubMed]
    [Google Scholar]
  75. Walsh F, Amyes SGB. Carbapenem resistance in clinical isolates of Pseudomonas aeruginosa. J Chemother 2007; 19:376–381 [View Article]
    [Google Scholar]
  76. Atzori A, Malviya VN, Malloci G, Dreier J, Pos KM et al. Identification and characterization of carbapenem binding sites within the RND-transporter AcrB. Biochim Biophys Acta Biomembr 2019; 1861:62–74 [View Article]
    [Google Scholar]
  77. Vargiu AV, Collu F, Schulz R, Pos KM, Zacharias M et al. Effect of the F610A mutation on substrate extrusion in the AcrB transporter: explanation and rationale by molecular dynamics simulations. J Am Chem Soc 2011; 133:10704–10707 [View Article] [PubMed]
    [Google Scholar]
  78. Dey D, Kavanaugh LG, Conn GL. Antibiotic substrate selectivity of Pseudomonas aeruginosa MexY and MexB efflux systems is determined by a goldilocks affinity. Antimicrob Agents Chemother 2020; 64:e00496-20 [View Article]
    [Google Scholar]
  79. Bharatham N, Bhowmik P, Aoki M, Okada U, Sharma S et al. Structure and function relationship of OqxB efflux pump from Klebsiella pneumoniae. Nat Commun 2021; 12:5400 [View Article]
    [Google Scholar]
  80. Li J, Zhang H, Ning J, Sajid A, Cheng G et al. The nature and epidemiology of OqxAB, a multidrug efflux pump. Antimicrob Resist Infect Control 2019; 8:44 [View Article] [PubMed]
    [Google Scholar]
  81. Vargiu AV, Ramaswamy VK, Malvacio I, Malloci G, Kleinekathöfer U et al. Water-mediated interactions enable smooth substrate transport in a bacterial efflux pump. Biochim Biophys Acta Gen Subj 2018; 1862:836–845 [View Article] [PubMed]
    [Google Scholar]
  82. Schulz R, Vargiu AV, Ruggerone P, Kleinekathöfer U. Role of water during the extrusion of substrates by the efflux transporter AcrB. J Phys Chem B 2011; 115:8278–8287 [View Article] [PubMed]
    [Google Scholar]
  83. Chitsaz M, Booth L, Blyth MT, O’Mara ML, Brown MH. Multidrug resistance in Neisseria gonorrhoeae: identification of functionally important residues in the MtrD efflux protein. mBio 2019; 10:e02277-19 [View Article]
    [Google Scholar]
  84. Vergalli J, Atzori A, Pajovic J, Dumont E, Malloci G et al. The challenge of intracellular antibiotic accumulation, a function of fluoroquinolone influx versus bacterial efflux. Commun Biol 2020; 3:198 [View Article] [PubMed]
    [Google Scholar]
  85. Vergalli J, Chauvet H, Oliva F, Pajović J, Malloci G et al. A framework for dissecting affinities of multidrug efflux transporter AcrB to fluoroquinolones. Commun Biol 2022; 5:1062 [View Article] [PubMed]
    [Google Scholar]
  86. Grimsey EM, Fais C, Marshall RL, Ricci V, Ciusa ML et al. Chlorpromazine and amitriptyline are substrates and inhibitors of the AcrB multidrug efflux pump. mBio 2020; 11:e00465-20 [View Article]
    [Google Scholar]
  87. Morgan CE, Glaza P, Leus IV, Trinh A, Su C-C et al. Cryoelectron microscopy structures of AdeB illuminate mechanisms of simultaneous binding and exporting of substrates. mBio 2021; 12:e03690-20 [View Article]
    [Google Scholar]
  88. Leus IV, Weeks JW, Bonifay V, Smith L, Richardson S et al. Substrate specificities and efflux efficiencies of RND efflux pumps of Acinetobacter baumannii. J Bacteriol 2018; 200:e00049-18 [View Article]
    [Google Scholar]
  89. Sugawara E, Nikaido H. Properties of AdeABC and AdeIJK efflux systems of Acinetobacter baumannii compared with those of the AcrAB-TolC system of Escherichia coli. Antimicrob Agents Chemother 2014; 58:7250–7257 [View Article]
    [Google Scholar]
  90. Schulz R, Vargiu AV, Collu F, Kleinekathöfer U, Ruggerone P. Functional rotation of the transporter AcrB: insights into drug extrusion from simulations. PLoS Comput Biol 2010; 6:e1000806 [View Article] [PubMed]
    [Google Scholar]
  91. Zuo Z, Wang B, Weng J, Wang W. Stepwise substrate translocation mechanism revealed by free energy calculations of doxorubicin in the multidrug transporter AcrB. Sci Rep 2015; 5:13905 [View Article] [PubMed]
    [Google Scholar]
  92. Yamane T, Murakami S, Ikeguchi M. Functional rotation induced by alternating protonation states in the multidrug transporter AcrB: all-atom molecular dynamics simulations. Biochemistry 2013; 52:7648–7658 [View Article] [PubMed]
    [Google Scholar]
  93. Fischer N, Kandt C. Porter domain opening and closing motions in the multi-drug efflux transporter AcrB. Biochim Biophys Acta 2013; 1828:632–641 [View Article] [PubMed]
    [Google Scholar]
  94. Yue Z, Chen W, Zgurskaya HI, Shen J. Constant pH molecular dynamics reveals how proton release drives the conformational transition of a transmembrane efflux pump. J Chem Theory Comput 2017; 13:6405–6414 [View Article]
    [Google Scholar]
  95. Khandogin J, Brooks CL. Constant pH molecular dynamics with proton tautomerism. Biophys J 2005; 89:141–157 [View Article] [PubMed]
    [Google Scholar]
  96. Matsunaga Y, Yamane T, Terada T, Moritsugu K, Fujisaki H et al. Energetics and conformational pathways of functional rotation in the multidrug transporter AcrB. Elife 2018; 7:e31715 [View Article] [PubMed]
    [Google Scholar]
  97. Jewel Y, Liu J, Dutta P. Coarse-grained simulations of conformational changes in the multidrug efflux transporter AcrB. Mol Biosyst 2017; 13:2006–2014 [View Article] [PubMed]
    [Google Scholar]
  98. Han W, Schulten K. Further optimization of a hybrid united-atom and coarse-grained force field for folding simulations: Improved backbone hydration and interactions between charged side chains. J Chem Theory Comput 2012; 8:4413–4424 [View Article] [PubMed]
    [Google Scholar]
  99. Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH. The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B 2007; 111:7812–7824 [View Article] [PubMed]
    [Google Scholar]
  100. Jewel Y, Van Dinh Q, Liu J, Dutta P. Substrate-dependent transport mechanism in AcrB of multidrug resistant bacteria. Proteins 2020; 88:853–864 [View Article] [PubMed]
    [Google Scholar]
  101. Yao X-Q, Kenzaki H, Murakami S, Takada S. Drug export and allosteric coupling in a multidrug transporter revealed by molecular simulations. Nat Commun 2010; 1:117 [View Article]
    [Google Scholar]
  102. Murakami S, Nakashima R, Yamashita E, Yamaguchi A. Crystal structure of bacterial multidrug efflux transporter AcrB. Nature 2002; 419:587–593 [View Article]
    [Google Scholar]
  103. Feng Z, Hou T, Li Y. Unidirectional peristaltic movement in multisite drug binding pockets of AcrB from molecular dynamics simulations. Mol BioSyst 2012; 8:2699 [View Article] [PubMed]
    [Google Scholar]
  104. Fairweather SJ, Gupta V, Chitsaz M, Booth L, Brown MH et al. Coordination of substrate binding and protonation in the N. gonorrhoeae MtrD efflux pump controls the functionally rotating transport mechanism. ACS Infect Dis 2021; 7:1833–1847 [View Article]
    [Google Scholar]
  105. Ammerman L, Mertz SB, Park C, Wise JG. Transport dynamics of MtrD: an RND multidrug efflux pump from Neisseria gonorrhoeae. Biochemistry 2021; 60:3098–3113 [View Article]
    [Google Scholar]
  106. Yao X-Q, Kimura N, Murakami S, Takada S. Drug uptake pathways of multidrug transporter acrb studied by molecular simulations and site-directed mutagenesis experiments. J Am Chem Soc 2013; 135:7474–7485
    [Google Scholar]
  107. Bohnert JA, Schuster S, Seeger MA, Fähnrich E, Pos KM et al. Site-directed mutagenesis reveals putative substrate binding residues in the Escherichia coli RND efflux pump AcrB. J Bacteriol 2008; 190:8225–8229 [View Article]
    [Google Scholar]
  108. Bohnert JA, Schuster S, Szymaniak-Vits M, Kern WV. Determination of real-time efflux phenotypes in Escherichia coli AcrB binding pocket phenylalanine mutants using a 1,2’-dinaphthylamine efflux assay. PLoS ONE 2011; 6:e21196 [View Article]
    [Google Scholar]
  109. Blair JMA, Bavro VN, Ricci V, Modi N, Cacciotto P et al. AcrB drug-binding pocket substitution confers clinically relevant resistance and altered substrate specificity. Proc Natl Acad Sci USA 2015; 112:3511–3516 [View Article]
    [Google Scholar]
  110. Cha H, Müller RT, Pos KM. Switch-loop flexibility affects transport of large drugs by the promiscuous AcrB multidrug efflux transporter. Antimicrob Agents Chemother 2014; 58:4767–4772 [View Article]
    [Google Scholar]
  111. Kinana AD, Vargiu AV, Nikaido H. Some ligands enhance the efflux of other ligands by the Escherichia coli multidrug pump AcrB. Biochemistry 2013; 52:8342–8351 [View Article]
    [Google Scholar]
  112. Wang B, Weng J, Wang W. Free energy profiles of ion permeation and doxorubicin translocation in TolC. J Theor Comput Chem 2014; 13:1450031 [View Article]
    [Google Scholar]
  113. Wang B, Weng J, Wang W. Multiple conformational states and gate opening of outer membrane protein TolC revealed by molecular dynamics simulations. Proteins 2014; 82:2169–2179 [View Article]
    [Google Scholar]
  114. Schulz R, Kleinekathöfer U. Transitions between closed and open conformations of TolC: the effects of ions in simulations. Biophys J 2009; 96:3116–3125 [View Article] [PubMed]
    [Google Scholar]
  115. Alenazy R. Drug efflux pump inhibitors: a promising approach to counter multidrug resistance in Gram-negative pathogens by targeting AcrB protein from AcrAB-TolC multidrug efflux pump from Escherichia coli. Biology 2022; 11:1328 [View Article]
    [Google Scholar]
  116. Opperman TJ, Nguyen ST. Recent advances toward a molecular mechanism of efflux pump inhibition. Front Microbiol 2015; 6:421 [View Article]
    [Google Scholar]
  117. Venter H, Mowla R, Ohene-Agyei T, Ma S. RND-type drug efflux pumps from Gram-negative bacteria: molecular mechanism and inhibition. Front Microbiol 2015; 6:377 [View Article]
    [Google Scholar]
  118. Aparna V, Dineshkumar K, Mohanalakshmi N, Velmurugan D, Hopper W. Identification of natural compound inhibitors for multidrug efflux pumps of Escherichia coli and Pseudomonas aeruginosa using in silico high-throughput virtual screening and in vitro validation. PLoS One 2014; 9:e101840 [View Article]
    [Google Scholar]
  119. Ohene-Agyei T, Mowla R, Rahman T, Venter H. Phytochemicals increase the antibacterial activity of antibiotics by acting on a drug efflux pump. MicrobiologyOpen 2014; 3:885–896 [View Article] [PubMed]
    [Google Scholar]
  120. Lomovskaya O, Zgurskaya HI. Efflux pumps from Gram-negative bacteria: from structure and function to inhibition. Alita A. Miller and Paul F. Miller. U.K.: from: emerging trends in antibacterial discovery: answering the call to arms; 2011 www.caister.com/hsp/abstracts/antibacterial-discovery/04.html accessed 20 May 2017
  121. Thakur V, Uniyal A, Tiwari V. A comprehensive review on pharmacology of efflux pumps and their inhibitors in antibiotic resistance. Eur J Pharmacol 2021; 903:174151 [View Article] [PubMed]
    [Google Scholar]
  122. Lomovskaya O, Warren MS, Lee A, Galazzo J, Fronko R et al. Identification and characterization of inhibitors of multidrug resistance efflux pumps in Pseudomonas aeruginosa: novel agents for combination therapy. Antimicrob Agents Chemother 2001; 45:105–116 [View Article]
    [Google Scholar]
  123. Yu EW, Aires JR, McDermott G, Nikaido H. A periplasmic drug-binding site of the AcrB multidrug efflux pump: a crystallographic and site-directed mutagenesis study. J Bacteriol 2005; 187:6804–6815 [View Article]
    [Google Scholar]
  124. Reading E, Ahdash Z, Fais C, Ricci V, Wang-Kan X et al. Perturbed structural dynamics underlie inhibition and altered efflux of the multidrug resistance pump AcrB. Nat Commun 2020; 11:5565 [View Article] [PubMed]
    [Google Scholar]
  125. Schuster S, Bohnert JA, Vavra M, Rossen JW, Kern WV. Proof of an outer membrane target of the efflux inhibitor Phe-Arg-β-naphthylamide from random mutagenesis. Molecules 2019; 24:470 [View Article]
    [Google Scholar]
  126. Passarini I, Resende P de, Soares S, Tahmasi T, Stapleton P et al. Synthesis and in Silico modelling of the potential dual mechanistic activity of small cationic peptides potentiating the antibiotic novobiocin against susceptible and multi-drug resistant Escherichia coli. Int J Mol Sci 2020; 21:9134 [View Article]
    [Google Scholar]
  127. Kinana AD, Vargiu AV, May T, Nikaido H. Aminoacyl β-naphthylamides as substrates and modulators of AcrB multidrug efflux pump. Proc Natl Acad Sci U S A 2016; 113:1405–1410 [View Article] [PubMed]
    [Google Scholar]
  128. Zuo Z, Weng J, Wang W. Insights into the inhibitory mechanism of D13-9001 to the multidrug transporter AcrB through molecular dynamics simulations. J Phys Chem B 2016; 120:2145–2154 [View Article]
    [Google Scholar]
  129. Vargiu AV, Ruggerone P, Opperman TJ, Nguyen ST, Nikaido H. Molecular mechanism of MBX2319 inhibition of Escherichia coli AcrB multidrug efflux pump and comparison with other inhibitors. Antimicrob Agents Chemother 2014; 58:6224–6234 [View Article]
    [Google Scholar]
  130. Jamshidi S, Sutton JM, Rahman KM. Computational study reveals the molecular mechanism of the interaction between the efflux inhibitor PAβN and the AdeB transporter from Acinetobacter baumannii. ACS Omega 2017; 2:3002–3016 [View Article]
    [Google Scholar]
  131. Opperman TJ, Kwasny SM, Kim H-S, Nguyen ST, Houseweart C et al. Characterization of a novel pyranopyridine inhibitor of the AcrAB efflux pump of Escherichia coli. Antimicrob Agents Chemother 2014; 58:722–733 [View Article]
    [Google Scholar]
  132. Verma P, Tiwari M, Tiwari V. In silico high-throughput virtual screening and molecular dynamics simulation study to identify inhibitor for AdeABC efflux pump of Acinetobacter baumannii. J Biomol Struct Dyn 2018; 36:1182–1194 [View Article]
    [Google Scholar]
  133. Genheden S, Ryde U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov 2015; 10:449–461 [View Article] [PubMed]
    [Google Scholar]
  134. Mehla J, Malloci G, Mansbach R, López CA, Tsivkovski R et al. Predictive rules of efflux inhibition and avoidance in Pseudomonas aeruginosa. mBio 2021; 12:e02785-20 [View Article]
    [Google Scholar]
  135. Wang Y, Mowla R, Guo L, Ogunniyi AD, Rahman T et al. Evaluation of a series of 2-napthamide derivatives as inhibitors of the drug efflux pump AcrB for the reversal of antimicrobial resistance. Bioorganic Med Chem Lett 2017; 27:733–739 [View Article]
    [Google Scholar]
  136. Wang Y, Mowla R, Ji S, Guo L, De Barros Lopes MA et al. Design, synthesis and biological activity evaluation of novel 4-subtituted 2-naphthamide derivatives as AcrB inhibitors. Eur J Med Chem 2018; 143:699–709 [View Article] [PubMed]
    [Google Scholar]
  137. Mangiaterra G, Laudadio E, Cometti M, Mobbili G, Minnelli C et al. Inhibitors of multidrug efflux pumps of Pseudomonas aeruginosa from natural sources: an in silico high-throughput virtual screening and in vitro validation. Med Chem Res 2017; 26:414–430 [View Article]
    [Google Scholar]
  138. Laudadio E, Cedraro N, Mangiaterra G, Citterio B, Mobbili G et al. Natural alkaloid berberine activity against Pseudomonas aeruginosa mexxy-mediated aminoglycoside resistance: in silico and in vitro studies. J Nat Prod 2019; 82:1935–1944 [View Article]
    [Google Scholar]
  139. Mangiaterra G, Cedraro N, Laudadio E, Minnelli C, Citterio B et al. The natural alkaloid berberine can reduce the number of Pseudomonas aeruginosa tolerant cells. J Nat Prod 2021; 84:993–1001 [View Article]
    [Google Scholar]
  140. Giorgini G, Mangiaterra G, Cedraro N, Laudadio E, Sabbatini G et al. Berberine derivatives as Pseudomonas aeruginosa MexXY-OprM inhibitors: activity and in silico insights. Molecules 2021; 26:6644 [View Article]
    [Google Scholar]
  141. Oyedara OO, Fadare OA, Franco-Frías E, Heredia N, García S. Computational assessment of phytochemicals of medicinal plants from Mexico as potential inhibitors of Salmonella enterica efflux pump AcrB protein. J Biomol Struct Dyn 2023; 41:1776–1789 [View Article] [PubMed]
    [Google Scholar]
  142. Silva L, Carrion LL, von Groll A, Costa SS, Junqueira E et al. In vitro and in silico analysis of the efficiency of tetrahydropyridines as drug efflux inhibitors in Escherichia coli. Int J Antimicrob Agents 2017; 49:308–314 [View Article]
    [Google Scholar]
  143. Yilmaz S, Altinkanat-Gelmez G, Bolelli K, Guneser-Merdan D, Ufuk Over-Hasdemir M et al. Binding site feature description of 2-substituted benzothiazoles as potential AcrAB-TolC efflux pump inhibitors in E. coli. SAR QSAR Environ Res 2015; 26:853–871 [View Article]
    [Google Scholar]
  144. Abdel-Halim H, Al Dajani A, Abdelhalim A, Abdelmalek S. The search of potential inhibitors of the AcrAB-TolC system of multidrug-resistant Escherichia coli: an in silico approach. Appl Microbiol Biotechnol 2019; 103:6309–6318 [View Article]
    [Google Scholar]
  145. Shaheen A, Afridi WA, Mahboob S, Sana M, Zeeshan N et al. Reserpine is the new addition into the repertoire of AcrB efflux pump inhibitors. Mol Biol 2019; 53:596–605 [View Article]
    [Google Scholar]
  146. Jain N, Sk MF, Mishra A, Kar P, Kumar A. Identification of novel efflux pump inhibitors for Neisseria gonorrhoeae via multiple ligand-based pharmacophores, e-pharmacophore, molecular docking, density functional theory, and molecular dynamics approaches. Comput Biol Chem 2022; 98:107682 [View Article]
    [Google Scholar]
  147. Irwin JJ, Tang KG, Young J, Dandarchuluun C, Wong BR et al. ZINC20-a free ultralarge-scale chemical database for ligand discovery. J Chem Inf Model 2020; 60:6065–6073 [View Article]
    [Google Scholar]
  148. Plé C, Tam H-K, Vieira Da Cruz A, Compagne N, Jiménez-Castellanos J-C et al. Pyridylpiperazine-based allosteric inhibitors of RND-type multidrug efflux pumps. Nat Commun 2022; 13:115 [View Article] [PubMed]
    [Google Scholar]
  149. McNeil HE, Alav I, Torres RC, Rossiter AE, Laycock E et al. Identification of binding residues between periplasmic adapter protein (PAP) and RND efflux pumps explains PAP-pump promiscuity and roles in antimicrobial resistance. PLoS Pathog 2019; 15:e1008101 [View Article] [PubMed]
    [Google Scholar]
  150. Abdali N, Parks JM, Haynes KM, Chaney JL, Green AT et al. Reviving antibiotics: efflux pump inhibitors that interact with AcrA, a membrane fusion protein of the AcrAB-TolC multidrug efflux pump. ACS Infect Dis 2017; 3:89–98 [View Article]
    [Google Scholar]
  151. D’Cunha N, Moniruzzaman M, Haynes K, Malloci G, Cooper CJ et al. Mechanistic duality of bacterial efflux substrates and inhibitors: example of simple substituted cinnamoyl and naphthyl amides. ACS Infect Dis 2021; 7:2650–2665 [View Article]
    [Google Scholar]
  152. Darzynkiewicz ZM, Green AT, Abdali N, Hazel A, Fulton RL et al. Identification of binding sites for efflux pump inhibitors of the AcrAB-TolC component AcrA. Biophys J 2019; 116:648–658 [View Article]
    [Google Scholar]
  153. Haynes KM, Abdali N, Jhawar V, Zgurskaya HI, Parks JM et al. Identification and structure-activity relationships of novel compounds that potentiate the activities of antibiotics in Escherichia coli. J Med Chem 2017; 60:6205–6219 [View Article]
    [Google Scholar]
  154. Sterling T, Irwin JJ. ZINC 15--ligand discovery for everyone. J Chem Inf Model 2015; 55:2324–2337 [View Article]
    [Google Scholar]
  155. Green AT, Moniruzzaman M, Cooper CJ, Walker JK, Smith JC et al. Discovery of multidrug efflux pump inhibitors with a novel chemical scaffold. Biochim Biophys Acta Gen Subj 2020; 1864:129546 [View Article] [PubMed]
    [Google Scholar]
  156. Verma P, Tiwari V. Targeting outer membrane protein component AdeC for the discovery of efflux pump inhibitor against AdeABC efflux pump of multidrug resistant Acinetobacter baumannii. Cell Biochem Biophys 2018; 76:391–400 [View Article]
    [Google Scholar]
  157. Seyedhosseini Ghaheh H, Damavandi MS, Sadeghi P, Massah AR, Asl TH et al. Targeting and ultrabroad insight into molecular basis of resistance-nodulation-cell division efflux pumps. Sci Rep 2022; 12:16130 [View Article]
    [Google Scholar]
  158. Ma M, Lustig M, Salem M, Mengin-Lecreulx D, Phan G et al. MexAB-OprM efflux pump interaction with the peptidoglycan of Escherichia coli and Pseudomonas aeruginosa. IJMS 2021; 22:5328 [View Article]
    [Google Scholar]
  159. Qiu W, Fu Z, Xu GG, Grassucci RA, Zhang Y et al. Structure and activity of lipid bilayer within a membrane-protein transporter. Proc Natl Acad Sci U S A 2018; 115:12985–12990 [View Article] [PubMed]
    [Google Scholar]
  160. López CA, Travers T, Pos KM, Zgurskaya HI, Gnanakaran S. Dynamics of intact MexAB-OprM efflux pump: focusing on the MexA-OprM interface. Sci Rep 2017; 7:16521 [View Article]
    [Google Scholar]
  161. Tsutsumi K, Yonehara R, Ishizaka-Ikeda E, Miyazaki N, Maeda S et al. Structures of the wild-type MexAB-OprM tripartite pump reveal its complex formation and drug efflux mechanism. Nat Commun 2019; 10:1520 [View Article] [PubMed]
    [Google Scholar]
  162. Hazel AJ, Abdali N, Leus IV, Parks JM, Smith JC et al. Conformational dynamics of AcrA govern multidrug efflux pump assembly. ACS Infect Dis 2019; 5:1926–1935 [View Article]
    [Google Scholar]
  163. Gaieb Z, Parks CD, Chiu M, Yang H, Shao C et al. D3R grand challenge 3: blind prediction of protein-ligand poses and affinity rankings. J Comput Aided Mol Des 2019; 33:1–18 [View Article]
    [Google Scholar]
  164. Cacciotto P, Basciu A, Oliva F, Malloci G, Zacharias M et al. Molecular rationale for the impairment of the MexAB-OprM efflux pump by a single mutation in MexA. Comput Struct Biotechnol J 2022; 20:252–260 [View Article] [PubMed]
    [Google Scholar]
  165. Nehme D, Li X-Z, Elliot R, Poole K. Assembly of the MexAB-OprM multidrug efflux system of Pseudomonas aeruginosa: identification and characterization of mutations in mexA compromising MexA multimerization and interaction with MexB. J Bacteriol 2004; 186:2973–2983 [View Article]
    [Google Scholar]
  166. Webber A, Ratnaweera M, Harris A, Luisi BF, Ntsogo Enguéné VY. A model for allosteric communication in drug transport by the acrab-tolc tripartite efflux pump. Antibiotics 2022; 11:52 [View Article]
    [Google Scholar]
  167. Hsu P-C, Samsudin F, Shearer J, Khalid S. It is complicated: curvature, diffusion, and lipid sorting within the two membranes of Escherichia coli. J Phys Chem Lett 2017; 8:5513–5518 [View Article]
    [Google Scholar]
  168. Hobbs EC, Yin X, Paul BJ, Astarita JL, Storz G. Conserved small protein associates with the multidrug efflux pump AcrB and differentially affects antibiotic resistance. Proc Natl Acad Sci USA 2012; 109:16696–16701 [View Article] [PubMed]
    [Google Scholar]
  169. Du D, Neuberger A, Orr MW, Newman CE, Hsu P-C et al. Interactions of a bacterial RND transporter with a transmembrane small protein in a lipid environment. Structure 2020; 28:625–634 [View Article]
    [Google Scholar]
  170. Zang M, MacDermott-Opeskin H, Adams FG, Naidu V, Waters JK et al. The membrane composition defines the spatial organization and function of a major Acinetobacter baumannii drug efflux system. mBio 2021; 12: [View Article]
    [Google Scholar]
  171. Zgurskaya HI, Rybenkov VV, Krishnamoorthy G, Leus IV. Trans-envelope multidrug efflux pumps of Gram-negative bacteria and their synergism with the outer membrane barrier. Res Microbiol 2018; 169:351–356 [View Article] [PubMed]
    [Google Scholar]
  172. Yao XQ, Kenzaki H, Murakami S, Takada S. Drug export and allosteric coupling in a multidrug transporter revealed by molecular simulations. Nat Commun 2010; 1:117 [View Article] [PubMed]
    [Google Scholar]
  173. Yamaguchi A, Nakashima R, Sakurai K. Structural basis of RND-type multidrug exporters. Front Microbiol 2015; 6:327 [View Article]
    [Google Scholar]
  174. de Jong DH, Baoukina S, Ingólfsson HI, Marrink SJ. Martini straight: boosting performance using a shorter cutoff and GPUs. Comput Phys Commun 2016; 199:1–7 [View Article]
    [Google Scholar]
  175. Marrink SJ, Corradi V, Souza PCT, Ingólfsson HI, Tieleman DP et al. Computational modeling of realistic cell membranes. Chem Rev 2019; 119:6184–6226 [View Article]
    [Google Scholar]
  176. Pedebos C, Smith IPS, Boags A, Khalid S. The hitchhiker’s guide to the periplasm: unexpected molecular interactions of polymyxin B1 in E. coli. Structure 2021; 29:444–456 [View Article]
    [Google Scholar]
  177. Alessandri R, Barnoud J, Gertsen AS, Patmanidis I, de Vries AH et al. Martini 3 coarse‐grained force field: small molecules. Advcd Theory and Sims 2022; 5:2100391 [View Article]
    [Google Scholar]
  178. Ayton GS, Voth GA. Multiscale computer simulation of the immature HIV-1 virion. Biophys J 2010; 99:2757–2765 [View Article] [PubMed]
    [Google Scholar]
  179. Khalid S, Schroeder C, Bond PJ, Duncan AL. What have molecular simulations contributed to understanding of gram-negative bacterial cell envelopes?. Microbiology 2022; 168: [View Article]
    [Google Scholar]
  180. Eicher T, Seeger MA, Anselmi C, Zhou W, Brandstätter L et al. Coupling of remote alternating-access transport mechanisms for protons and substrates in the multidrug efflux pump AcrB. Elife 2014; 3:e03145 [View Article]
    [Google Scholar]
  181. Lamut A, Peterlin Mašič L, Kikelj D, Tomašič T. Efflux pump inhibitors of clinically relevant multidrug resistant bacteria. Med Res Rev 2019; 39:2460–2504 [View Article] [PubMed]
    [Google Scholar]
  182. Nishino K, Yamasaki S, Nakashima R, Zwama M, Hayashi-Nishino M. Function and inhibitory mechanisms of multidrug efflux pumps. Front Microbiol 2021; 12:737288 [View Article]
    [Google Scholar]
  183. Stokes JM, Yang K, Swanson K, Jin W, Cubillos-Ruiz A et al. A deep learning approach to antibiotic discovery. Cell 2020; 180:688–702 [View Article]
    [Google Scholar]
  184. Chovancova E, Pavelka A, Benes P, Strnad O, Brezovsky J et al. CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures. PLoS Comput Biol 2012; 8:e1002708 [View Article]
    [Google Scholar]
  185. Koronakis V, Sharff A, Koronakis E, Luisi B, Hughes C. Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature 2000; 405:914–919 [View Article] [PubMed]
    [Google Scholar]
  186. Lamers RP, Cavallari JF, Burrows LL. The efflux inhibitor phenylalanine-arginine beta-naphthylamide (PAβN) permeabilizes the outer membrane of gram-negative bacteria. PLoS One 2013; 8:e60666 [View Article] [PubMed]
    [Google Scholar]
  187. Yoshida K-I, Nakayama K, Ohtsuka M, Kuru N, Yokomizo Y et al. MexAB-OprM specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 7: highly soluble and in vivo active quaternary ammonium analogue D13-9001, a potential preclinical candidate. Bioorg Med Chem 2007; 15:7087–7097 [View Article]
    [Google Scholar]
  188. Bohnert JA, Kern WV. Selected arylpiperazines are capable of reversing multidrug resistance in Escherichia coli overexpressing RND efflux pumps. Antimicrob Agents Chemother 2005; 49:849–852 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001307
Loading
/content/journal/micro/10.1099/mic.0.001307
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error