1887

Abstract

Fungal environments are rich in natural and engineered antimicrobials, and this, combined with the fact that fungal genomes are rich in coding sequences for transporters, suggests that fungi are an intriguing group in which to search for evidence of antimicrobial efflux pumps in mitochondria. Herein, the range of protective mechanisms used by fungi against antimicrobials is introduced, and it is hypothesized, based on the susceptibility of mitochondrial and bacterial ribosomes to the same antibiotics, that mitochondria might also contain pumps that efflux antibiotics from these organelles. Preliminary evidence of ethidium bromide efflux is presented and several candidate efflux pumps are identified in fungal mitochondrial proteomes.

Funding
This study was supported by the:
  • Natural Sciences and Engineering Research Council of Canada (Award RGPIN-05930-2016)
    • Principle Award Recipient: DeborahA. Court
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001272
2023-01-18
2024-05-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/169/1/mic001272.html?itemId=/content/journal/micro/10.1099/mic.0.001272&mimeType=html&fmt=ahah

References

  1. Mullis MM, Rambo IM, Baker BJ, Reese BK. Diversity, ecology, and prevalence of antimicrobials in nature. Front Microbiol 2019; 10:2518 [View Article] [PubMed]
    [Google Scholar]
  2. Cycoń M, Mrozik A, Piotrowska-Seget Z. Antibiotics in the soil environment-degradation and their impact on microbial activity and diversity. Front Microbiol 2019; 10:338 [View Article] [PubMed]
    [Google Scholar]
  3. Hendrickson JA, Hu C, Aitken SL, Beyda N. Antifungal resistance: a concerning trend for the present and future. Curr Infect Dis Rep 2019; 21:12 [View Article] [PubMed]
    [Google Scholar]
  4. Brauer VS, Rezende CP, Pessoni AM, De Paula RG, Rangappa KS et al. Antifungal agents in agriculture: friends and foes of public health. Biomolecules 2019; 9:E521 [View Article] [PubMed]
    [Google Scholar]
  5. Fisher MC, Hawkins NJ, Sanglard D, Gurr SJ. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science 2018; 360:739–742 [View Article] [PubMed]
    [Google Scholar]
  6. Houšť J, Spížek J, Havlíček V. Antifungal drugs. Metabolites 2020; 10:E106 [View Article]
    [Google Scholar]
  7. Szymański M, Chmielewska S, Czyżewska U, Malinowska M, Tylicki A. Echinocandins - structure, mechanism of action and use in antifungal therapy. J Enzyme Inhib Med Chem 2022; 37:876–894 [View Article] [PubMed]
    [Google Scholar]
  8. Lima SL, Colombo AL, de Almeida Junior JN. Fungal cell wall: emerging antifungals and drug resistance. Front Microbiol 2019; 10:2573 [View Article] [PubMed]
    [Google Scholar]
  9. Jørgensen LN, Heick TM. Azole use in agriculture, horticulture, and wood preservation - is it indispensable?. Front Cell Infect Microbiol 2021; 11:730297 [View Article] [PubMed]
    [Google Scholar]
  10. Hu M, Chen S. Non-target site mechanisms of fungicide resistance in crop pathogens: a review. Microorganisms 2021; 9:502 [View Article] [PubMed]
    [Google Scholar]
  11. Flowers SA, Barker KS, Berkow EL, Toner G, Chadwick SG et al. Gain-of-function mutations in UPC2 are a frequent cause of ERG11 upregulation in azole-resistant clinical isolates of Candida albicans. Eukaryot Cell 2012; 11:1289–1299 [View Article] [PubMed]
    [Google Scholar]
  12. Xiang M-J, Liu J-Y, Ni P-H, Wang S, Shi C et al. Erg11 mutations associated with azole resistance in clinical isolates of Candida albicans. FEMS Yeast Res 2013; 13:386–393 [View Article] [PubMed]
    [Google Scholar]
  13. Kawano-Kawada M, Pongcharoen P, Kawahara R, Yasuda M, Yamasaki T et al. Vba4p, a vacuolar membrane protein, is involved in the drug resistance and vacuolar morphology of Saccharomyces cerevisiae. Biosci Biotechnol Biochem 2016; 80:279–287 [View Article] [PubMed]
    [Google Scholar]
  14. Cowen LE, Sanglard D, Howard SJ, Rogers PD, Perlin DS. Mechanisms of antifungal drug resistance. Cold Spring Harb Perspect Med 2014; 5:a019752 [View Article] [PubMed]
    [Google Scholar]
  15. Holmes AR, Cardno TS, Strouse JJ, Ivnitski-Steele I, Keniya MV et al. Targeting efflux pumps to overcome antifungal drug resistance. Future Med Chem 2016; 8:1485–1501 [View Article]
    [Google Scholar]
  16. Sá-Correia I, dos Santos SC, Teixeira MC, Cabrito TR, Mira NP. Drug:H+ antiporters in chemical stress response in yeast. Trends Microbiol 2009; 17:22–31 [View Article] [PubMed]
    [Google Scholar]
  17. Kim J, Cater RJ, Choy BC, Mancia F. Structural insights into transporter-mediated drug resistance in infectious diseases. J Mol Biol 2021; 433:167005 [View Article] [PubMed]
    [Google Scholar]
  18. Luo B, Ning Y. Comprehensive overview of carboxamide derivatives as succinate dehydrogenase inhibitors. J Agric Food Chem 2022; 70:957–975 [View Article] [PubMed]
    [Google Scholar]
  19. Mosbach A, Edel D, Farmer AD, Widdison S, Barchietto T et al. Anilinopyrimidine resistance in Botrytis cinerea is linked to mitochondrial function. Front Microbiol 2017; 8:2361 [View Article] [PubMed]
    [Google Scholar]
  20. Musso L, Fabbrini A, Dallavalle S. Natural compound-derived cytochrome bc1 complex inhibitors as Antifungal Agents. Molecules 2020; 25:19 [View Article] [PubMed]
    [Google Scholar]
  21. Leroux P, Gredt M, Leroch M, Walker AS. Exploring mechanisms of resistance to respiratory inhibitors in field strains of Botrytis cinerea, the causal agent of gray mold. Appl Environ Microbiol 2010; 76:6615–6630 [View Article] [PubMed]
    [Google Scholar]
  22. Sang H, Chang HX, Choi S, Son D, Lee G et al. Genome-wide transcriptional response of the causal soybean sudden death syndrome pathogen Fusarium virguliforme to a succinate dehydrogenase inhibitor fluopyram. Pest Manag Sci 2022; 78:530–540 [View Article] [PubMed]
    [Google Scholar]
  23. Omrane S, Sghyer H, Audéon C, Lanen C, Duplaix C et al. Fungicide efflux and the MgMFS1 transporter contribute to the multidrug resistance phenotype in Zymoseptoria tritici field isolates. Environ Microbiol 2015; 17:2805–2823 [View Article] [PubMed]
    [Google Scholar]
  24. Tassel D, Madoff MA. Treatment of Candida sepsis and Cryptococcus meningitis with 5-fluorocytosine. A new antifungal agent. JAMA 1968; 206:830–832 [PubMed]
    [Google Scholar]
  25. Mourad A, Perfect JR. Present and future therapy of Cryptococcus infections. JoF 2018; 4:79 [View Article]
    [Google Scholar]
  26. Delma FZ, Al-Hatmi AMS, Brüggemann RJM, Melchers WJG, de Hoog S et al. Molecular mechanisms of 5-fluorocytosine resistance in yeasts and filamentous fungi. J Fungi (Basel) 2021; 7:11 [View Article] [PubMed]
    [Google Scholar]
  27. Margulis L. Symbiotic theory of the origin of eukaryotic organelles; criteria for proof. Symp Soc Exp Biol 197521–38
    [Google Scholar]
  28. Tzagoloff A, Foury F, Akai A. Assembly of the mitochondrial membrane system. XVIII. Genetic loci on mitochondrial DNA involved in cytochrome b biosynthesis. Mol Gen Genet 1976; 149:33–42 [View Article] [PubMed]
    [Google Scholar]
  29. Coruzzi G, Tzagoloff A. Assembly of the mitochondrial membrane system. DNA sequence of subunit 2 of yeast cytochrome oxidase. J Biol Chem 1979; 254:9324–9330 [View Article] [PubMed]
    [Google Scholar]
  30. Macino G, Tzagoloff A. Assembly of the mitochondrial membrane system: sequence analysis of a yeast mitochondrial ATPase gene containing the oli-2 and oli-4 loci. Cell 1980; 20:507–517 [View Article] [PubMed]
    [Google Scholar]
  31. Wang X, Ryu D, Houtkooper RH, Auwerx J. Antibiotic use and abuse: a threat to mitochondria and chloroplasts with impact on research, health, and environment. Bioessays 2015; 37:1045–1053 [View Article] [PubMed]
    [Google Scholar]
  32. Nosek J, Fukuhara H. NADH dehydrogenase subunit genes in the mitochondrial DNA of yeasts. J Bacteriol 1994; 176:5622–5630 [View Article] [PubMed]
    [Google Scholar]
  33. Sor F, Fukuhara H. Identification of two erythromycin resistance mutations in the mitochondrial gene coding for the large ribosomal RNA in yeast. Nucleic Acids Res 1982; 10:6571–6577 [View Article] [PubMed]
    [Google Scholar]
  34. Dujon B. Sequence of the intron and flanking exons of the mitochondrial 21S rRNA gene of yeast strains having different alleles at the omega and rib-1 loci. Cell 1980; 20:185–197 [View Article] [PubMed]
    [Google Scholar]
  35. Blanc H, Wright CT, Bibb MJ, Wallace DC, Clayton DA. Mitochondrial DNA of chloramphenicol-resistant mouse cells contains a single nucleotide change in the region encoding the 3’ end of the large ribosomal RNA. Proc Natl Acad Sci 1981; 78:3789–3793 [View Article]
    [Google Scholar]
  36. Wilson DN. Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nat Rev Microbiol 2014; 12:35–48 [View Article] [PubMed]
    [Google Scholar]
  37. do Valle Matta MA, Jonniaux JL, Balzi E, Goffeau A, van den Hazel B. Novel target genes of the yeast regulator Pdr1p: a contribution of the TPO1 gene in resistance to quinidine and other drugs. Gene 2001; 272:111–119 [View Article] [PubMed]
    [Google Scholar]
  38. Markovich S, Yekutiel A, Shalit I, Shadkchan Y, Osherov N. Genomic approach to identification of mutations affecting caspofungin susceptibility in Saccharomyces cerevisiae. Antimicrob Agents Chemother 2004; 48:3871–3876 [View Article] [PubMed]
    [Google Scholar]
  39. Albertsen M, Bellahn I, Krämer R, Waffenschmidt S. Localization and function of the yeast multidrug transporter Tpo1p. J Biol Chem 2003; 278:12820–12825 [View Article] [PubMed]
    [Google Scholar]
  40. Vögtle F-N, Burkhart JM, Gonczarowska-Jorge H, Kücükköse C, Taskin AA et al. Landscape of submitochondrial protein distribution. Nat Commun 2017; 8:290 [View Article] [PubMed]
    [Google Scholar]
  41. Dartier J, Lemaitre E, Chourpa I, Goupille C, Servais S et al. ATP-dependent activity and mitochondrial localization of drug efflux pumps in doxorubicin-resistant breast cancer cells. Biochim Biophys Acta Gen Subj 2017; 1861:1075–1084 [View Article] [PubMed]
    [Google Scholar]
  42. Cunha-Oliveira T, Ferreira LL, Coelho AR, Deus CM, Oliveira PJ. Doxorubicin triggers bioenergetic failure and p53 activation in mouse stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol 2018; 348:1–13 [View Article] [PubMed]
    [Google Scholar]
  43. Kumar A, Worobec EA. HasF, a TolC-homolog of Serratia marcescens, is involved in energy-dependent efflux. Can J Microbiol 2005; 51:497–500 [View Article] [PubMed]
    [Google Scholar]
  44. Huang J, O’Toole PW, Shen W, Amrine-Madsen H, Jiang X et al. Novel chromosomally encoded multidrug efflux transporter MdeA in Staphylococcus aureus. Antimicrob Agents Chemother 2004; 48:909–917 [View Article] [PubMed]
    [Google Scholar]
  45. Srinivasan VB, Venkataramaiah M, Mondal A, Rajamohan G. Functional characterization of AbeD, an RND-type membrane transporter in antimicrobial resistance in Acinetobacter baumannii. PLoS One 2015; 10:e0141314 [View Article] [PubMed]
    [Google Scholar]
  46. Paulsen IT, Brown MH, Skurray RA. Proton-dependent multidrug efflux systems. Microbiol Rev 1996; 60:575–608 [View Article] [PubMed]
    [Google Scholar]
  47. Ammor MS, Flórez AB, Margolles A, Mayo B. Fluorescence spectroscopy: a rapid tool for assessing tetracycline resistance in Bifidobacterium longum. Can J Microbiol 2006; 52:740–746 [View Article] [PubMed]
    [Google Scholar]
  48. Shuvo SR, Wiens LM, Subramaniam S, Treberg JR, Court DA. Increased reactive oxygen species production and maintenance of membrane potential in VDAC-less Neurospora crassa mitochondria. J Bioenerg Biomembr 2019; 51:341–354 [View Article] [PubMed]
    [Google Scholar]
  49. Hassan KA, Liu Q, Elbourne LDH, Ahmad I, Sharples D et al. Pacing across the membrane: the novel PACE family of efflux pumps is widespread in Gram-negative pathogens. Res Microbiol 2018; 169:450–454 [View Article] [PubMed]
    [Google Scholar]
  50. Summers WAT, Wilkins JA, Dwivedi RC, Ezzati P, Court DA. Mitochondrial dysfunction resulting from the absence of mitochondrial porin in Neurospora crassa. Mitochondrion 2012; 12:220–229 [View Article] [PubMed]
    [Google Scholar]
  51. Kornelsen V, Kumar A. Update on multidrug resistance efflux pumps in Acinetobacter spp. Antimicrob Agents Chemother 2021; 65:e0051421 [View Article] [PubMed]
    [Google Scholar]
  52. Du D, Wang-Kan X, Neuberger A, van Veen HW, Pos KM et al. Multidrug efflux pumps: structure, function and regulation. Nat Rev Microbiol 2018; 16:523–539 [View Article] [PubMed]
    [Google Scholar]
  53. Brown MH, Paulsen IT, Skurray RA. The multidrug efflux protein norm is a prototype of a new family of transporters. Mol Microbiol 2002; 31:393–395
    [Google Scholar]
  54. Paulsen IT, Brown MH, Dunstan SJ, Skurray RA. Molecular characterization of the staphylococcal multidrug resistance export protein QacC. J Bacteriol 1995; 177:2827–2833 [View Article] [PubMed]
    [Google Scholar]
  55. Eicher T, Brandstätter L, Pos KM. Structural and functional aspects of the multidrug efflux pump AcrB. Biol Chem 2009; 390:693–699 [View Article] [PubMed]
    [Google Scholar]
  56. Hassan KA, Liu Q, Henderson PJF, Paulsen IT. Homologs of the Acinetobacter baumannii AceI transporter represent a new family of bacterial multidrug efflux systems. mBio 2015; 6:e01982-14 [View Article] [PubMed]
    [Google Scholar]
  57. Saier MH, Reddy VS, Moreno-Hagelsieb G, Hendargo KJ, Zhang Y et al. The transporter classification database (TCDB): 2021 update. Nucleic Acids Res 2021; 49:D461–D467 [View Article] [PubMed]
    [Google Scholar]
  58. Dean M, Allikmets R. Complete characterization of the human ABC gene family. J Bioenerg Biomembr 2001; 33:475–479 [View Article] [PubMed]
    [Google Scholar]
  59. Procko E, O’Mara ML, Bennett WFD, Tieleman DP, Gaudet R. The mechanism of ABC transporters: general lessons from structural and functional studies of an antigenic peptide transporter. FASEB J 2009; 23:1287–1302 [View Article] [PubMed]
    [Google Scholar]
  60. Khunweeraphong N, Kuchler K. Multidrug resistance in mammals and fungi-from MDR to PDR: a rocky road from atomic structures to transport mechanisms. Int J Mol Sci 2021; 22:4806 [View Article] [PubMed]
    [Google Scholar]
  61. Prasad R, Rawal MK. Efflux pump proteins in antifungal resistance. Front Pharmacol 2014; 5:202 [View Article] [PubMed]
    [Google Scholar]
  62. De Rossi E, Arrigo P, Bellinzoni M, Silva PAE, Martín C et al. The multidrug transporters belonging to major facilitator superfamily in Mycobacterium tuberculosis. Mol Med 2002; 8:714–724 [PubMed]
    [Google Scholar]
  63. Drew D, North RA, Nagarathinam K, Tanabe M. Structures and general transport mechanisms by the major facilitator superfamily (MFS). Chem Rev 2021; 121:5289–5335 [View Article] [PubMed]
    [Google Scholar]
  64. Barabote RD, Thekkiniath J, Strauss RE, Vediyappan G, Fralick JA et al. Xenobiotic efflux in bacteria and fungi: a genomics update. Adv Enzymol Relat Areas Mol Biol 2010; 77:237–306
    [Google Scholar]
  65. Spatafora JW, Aime MC, Grigoriev IV, Martin F, Stajich JE et al. The fungal tree of life: from molecular systematics to genome-scale phylogenies. Microbiol Spectr 2017; 5: [View Article] [PubMed]
    [Google Scholar]
  66. Andrade AC, Van Nistelrooy JG, Peery RB, Skatrud PL, De Waard MA. The role of ABC transporters from Aspergillus nidulans in protection against cytotoxic agents and in antibiotic production. Mol Gen Genet 2000; 263:966–977 [View Article] [PubMed]
    [Google Scholar]
  67. Fernández-Aguado M, Martín JF, Rodríguez-Castro R, García-Estrada C, Albillos SM et al. New insights into the isopenicillin N transport in Penicillium chrysogenum. Metab Eng 2014; 22:89–103 [View Article] [PubMed]
    [Google Scholar]
  68. Martín JF. Transport systems, intracellular traffic of intermediates and secretion of β-lactam antibiotics in fungi. Fungal Biol Biotechnol 2020; 7:6 [View Article] [PubMed]
    [Google Scholar]
  69. Neupert W. Protein import into mitochondria. Annu Rev Biochem 1997; 66:863–917 [View Article] [PubMed]
    [Google Scholar]
  70. Fukasawa Y, Tsuji J, Fu SC, Tomii K, Horton P et al. MitoFates: improved prediction of mitochondrial targeting sequences and their cleavage sites. Mol Cell Proteomics 2015; 14:1113–1126 [View Article] [PubMed]
    [Google Scholar]
  71. Kreimendahl S, Schwichtenberg J, Günnewig K, Brandherm L, Rassow J. The selectivity filter of the mitochondrial protein import machinery. BMC Biol 2020; 18:156 [View Article] [PubMed]
    [Google Scholar]
  72. Morgenstern M, Stiller SB, Lübbert P, Peikert CD, Dannenmaier S et al. Definition of a high-confidence mitochondrial proteome at quantitative scale. Cell Rep 2017; 19:2836–2852 [View Article] [PubMed]
    [Google Scholar]
  73. Di Bartolomeo F, Malina C, Campbell K, Mormino M, Fuchs J et al. Absolute yeast mitochondrial proteome quantification reveals trade-off between biosynthesis and energy generation during diauxic shift. Proc Natl Acad Sci U S A 2020; 117:7524–7535 [View Article] [PubMed]
    [Google Scholar]
  74. Kispal G, Csere P, Guiard B, Lill R. The ABC transporter Atm1p is required for mitochondrial iron homeostasis. FEBS Lett 1997; 418:346–350 [View Article] [PubMed]
    [Google Scholar]
  75. Young L, Leonhard K, Tatsuta T, Trowsdale J, Langer T. Role of the ABC transporter Mdl1 in peptide export from mitochondria. Science 2001; 291:2135–2138 [View Article] [PubMed]
    [Google Scholar]
  76. Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 2011; 39:W29–37 [View Article] [PubMed]
    [Google Scholar]
  77. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25:3389–3402 [View Article] [PubMed]
    [Google Scholar]
  78. Keeping A, Deabreu D, Dibernardo M, Collins RA. Gel-based mass spectrometric and computational approaches to the mitochondrial proteome of Neurospora. Fungal Genet Biol 2011; 48:526–536 [View Article] [PubMed]
    [Google Scholar]
  79. Shuvo SR, Motnenko A, Krokhin OV, Spicer V, Court DA. Proteomic shifts reflecting oxidative stress and reduced capacity for protein synthesis, and alterations to mitochondrial membranes in Neurospora crassa lacking VDAC. Microorganisms 2022; 10:198 [View Article] [PubMed]
    [Google Scholar]
  80. Fernandes AS, Gonçalves AP, Castro A, Lopes TA, Gardner R et al. Modulation of fungal sensitivity to staurosporine by targeting proteins identified by transcriptional profiling. Fungal Genet Biol 2011; 48:1130–1138 [View Article] [PubMed]
    [Google Scholar]
  81. Pedro Gonçalves A, Silva N, Oliveira C, Kowbel DJ, Glass NL et al. Transcription profiling of the Neurospora crassa response to a group of synthetic (thio)xanthones and a natural acetophenone. Genom Data 2015; 4:26–32 [View Article] [PubMed]
    [Google Scholar]
  82. Lum PY, Armour CD, Stepaniants SB, Cavet G, Wolf MK et al. Discovering modes of action for therapeutic compounds using a genome-wide screen of yeast heterozygotes. Cell 2004; 116:121–137 [View Article] [PubMed]
    [Google Scholar]
  83. Knight JA, Courey AJ, Stebbins B. Second-site antibiotic resistance mutations in the ribosomal region of yeast mitochondrial DNA. Curr Genet 1982; 5:21–27 [View Article] [PubMed]
    [Google Scholar]
  84. Masuda T, Ito S, Ohtsuki S. Advances in sample preparation for membrane proteome quantification. Drug Discov Today Technol 2021; 39:23–29 [View Article] [PubMed]
    [Google Scholar]
  85. Young MJ. Off-target effects of drugs that disrupt human mitochondrial DNA maintenance. Front Mol Biosci 2017; 4:74 [View Article] [PubMed]
    [Google Scholar]
  86. Young CKJ, Wheeler JH, Rahman MM, Young MJ. The antiretroviral 2’,3’-dideoxycytidine causes mitochondrial dysfunction in proliferating and differentiated HepaRG human cell cultures. J Biol Chem 2021; 296:100206 [View Article] [PubMed]
    [Google Scholar]
  87. Grigoriev IV, Nikitin R, Haridas S, Kuo A, Ohm R et al. MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res 2014; 42:D699–704 [View Article] [PubMed]
    [Google Scholar]
  88. Vélez CG, Letcher PM, Schultz S, Powell MJ, Churchill PF. Molecular phylogenetic and zoospore ultrastructural analyses of Chytridium olla establish the limits of a monophyletic Chytridiales. Mycologia 2011; 103:118–130 [View Article] [PubMed]
    [Google Scholar]
  89. Spatafora JW, Chang Y, Benny GL, Lazarus K, Smith ME et al. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 2016; 108:1028–1046 [View Article] [PubMed]
    [Google Scholar]
  90. Kobayashi Y, Maeda T, Yamaguchi K, Kameoka H, Tanaka S et al. The genome of Rhizophagus clarus HR1 reveals a common genetic basis for auxotrophy among arbuscular mycorrhizal fungi. BMC Genomics 2018; 19:465 [View Article]
    [Google Scholar]
  91. Arnaud MB, Cerqueira GC, Inglis DO, Skrzypek MS, Binkley J et al. The Aspergillus genome database (AspGD): recent developments in comprehensive multispecies curation, comparative genomics and community resources. Nucleic Acids Res 2012; 40:D653–9 [View Article]
    [Google Scholar]
  92. Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND et al. The genome sequence of the filamentous fungus Neurospora crassa. Nature 2003; 422:859–868 [View Article]
    [Google Scholar]
  93. Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B et al. Life with 6000 genes. Science 1996; 274:546 [View Article]
    [Google Scholar]
  94. Jones T, Federspiel NA, Chibana H, Dungan J, Kalman S et al. The diploid genome sequence of Candida albicans. Proc Natl Acad Sci U S A 2004; 101:7329–7334 [View Article]
    [Google Scholar]
  95. Wood V, Gwilliam R, Rajandream M-A, Lyne M, Lyne R et al. The genome sequence of Schizosaccharomyces pombe. Nature 2002; 415:871–880 [View Article] [PubMed]
    [Google Scholar]
  96. Zhu Z, Zhang S, Liu H, Shen H, Lin X et al. A multi-omic map of the lipid-producing yeast Rhodosporidium toruloides. Nat Commun 2012; 3:1112 [View Article] [PubMed]
    [Google Scholar]
  97. Kämper J, Kahmann R, Bölker M, Ma L-J, Brefort T et al. Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 2006; 444:97–101 [View Article] [PubMed]
    [Google Scholar]
  98. Morin E, Kohler A, Baker AR, Foulongne-Oriol M, Lombard V et al. Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche. Proc Natl Acad Sci U S A 2012; 109:17501–17506 [View Article] [PubMed]
    [Google Scholar]
  99. Lin J, Zhou D, Steitz TA, Polikanov YS, Gagnon MG. Ribosome-targeting antibiotics: modes of action, mechanisms of resistance, and implications for drug design. Annu Rev Biochem 2018; 87:451–478 [View Article] [PubMed]
    [Google Scholar]
  100. Mahler HR, Perlman PS. Mitochondriogenesis analyzed by blocks on mitochondrial translation and transcription. Biochemistry 1971; 10:2979–2990 [View Article]
    [Google Scholar]
  101. Davey PJ, Haslam JM, Linnane AW. Biogenesis of mitochondria. 12. The effects of aminoglycoside antibiotics on the mitochondrial and cytoplasmic protein-synthesizing systems of Saccharomyces cerevisiae. Arch Biochem Biophys 1970; 136:54–64 [View Article] [PubMed]
    [Google Scholar]
  102. Sulavik MC, Houseweart C, Cramer C, Jiwani N, Murgolo N et al. Antibiotic susceptibility profiles of Escherichia coli strains lacking multidrug efflux pump genes. Antimicrob Agents Chemother 2001; 45:1126–1136 [View Article] [PubMed]
    [Google Scholar]
  103. Cheng K, Ren L, Ki T. Inhibitory concentrations of kanamycin in the presence of ppgpp synthase RelA confer protection against subsequent lethal antibiotic assaults in E. coli CP78. J Exp Microbiol Immunol 2010; 14:51–56
    [Google Scholar]
  104. Lamb AJ, Clark-Walker GD, Linnane AW. The biogenesis of mitochondria. 4. The differentiation of mitochondrial and cytoplasmic protein synthesizing systems in vitro by antibiotics. Biochim Biophys Acta 1968; 161:415–427 [PubMed]
    [Google Scholar]
  105. François B, Russell RJM, Murray JB, Aboul-ela F, Masquida B et al. Crystal structures of complexes between aminoglycosides and decoding A site oligonucleotides: role of the number of rings and positive charges in the specific binding leading to miscoding. Nucleic Acids Res 2005; 33:5677–5690 [View Article] [PubMed]
    [Google Scholar]
  106. Hughes AR, Wilkie D. Genetic analysis of mitochondrial resistance to tetracycline in Saccharomyces cerevisiae. Heredity (Edinb) 1972; 28:117–127 [View Article] [PubMed]
    [Google Scholar]
  107. Wolf K, Dujon B, Slonimski PP. Mitochondrial genetics. V. Multifactorial mitochondrial crosses involving a mutation conferring paromomycin-resistance in Saccharomyces cerevisiae. Mol Gen Genet 1973; 125:53–90 [View Article] [PubMed]
    [Google Scholar]
  108. Mehta R, Champney WS. Neomycin and paromomycin inhibit 30S ribosomal subunit assembly in Staphylococcus aureus. Curr Microbiol 2003; 47:237–243 [View Article] [PubMed]
    [Google Scholar]
  109. Islam MD. Investigating several putative mitochondrial pumps in Saccharomyces cerevisiae, MSc Thesis University of Manitoba; 2021
    [Google Scholar]
  110. Morgenstern M, Peikert CD, Lübbert P, Suppanz I, Klemm C et al. Quantitative high-confidence human mitochondrial proteome and its dynamics in cellular context. Cell Metab 2021; 33:2464–2483 [View Article]
    [Google Scholar]
  111. Lee CP, Eubel H, Solheim C, Millar AH. Mitochondrial proteome heterogeneity between tissues from the vegetative and reproductive stages of Arabidopsis thaliana development. J Proteome Res 2012; 11:3326–3343 [View Article] [PubMed]
    [Google Scholar]
  112. Wirsing L, Klawonn F, Sassen WA, Lünsdorf H, Probst C et al. Linear discriminant analysis identifies mitochondrially localized proteins in Neurospora crassa. J Proteome Res 2015; 14:3900–3911 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001272
Loading
/content/journal/micro/10.1099/mic.0.001272
Loading

Data & Media loading...

Supplements

Supplementary material 1

EXCEL

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error