1887

Abstract

The problem of antibiotic resistance among pathogenic bacteria has reached a crisis level. The treatment options against infections caused by multiple drug-resistant bacteria are shrinking gradually. The current pace of the discovery of new antibacterial entities is lagging behind the rate of development of new resistance. Efflux pumps play a central role in making a bacterium resistant to multiple antibiotics due to their ability to expel a wide range of structurally diverse compounds. Besides providing an escape from antibacterial compounds, efflux pumps are also involved in bacterial stress response, virulence, biofilm formation, and altering host physiology. Efflux pumps are unique yet challenging targets for the discovery of novel efflux pump inhibitors (EPIs). EPIs could help rejuvenate our currently dried pipeline of antibacterial drug discovery. The current article highlights the recent developments in the field of efflux pumps, challenges faced during the development of EPIs and potential approaches for their development. Additionally, this review highlights the utility of resources such as natural products and machine learning to expand our EPIs arsenal using these latest technologies.

Funding
This study was supported by the:
  • The Wellcome Trust DBT India Alliance (Award TIA-1815-BIO)
    • Principle Award Recipient: RanjanaPathania
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. The Microbiology Society waived the open access fees for this article.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001333
2023-05-24
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/169/5/mic001333.html?itemId=/content/journal/micro/10.1099/mic.0.001333&mimeType=html&fmt=ahah

References

  1. Laxminarayan R, Duse A, Wattal C, Zaidi AKM, Wertheim HFL et al. Antibiotic resistance-the need for global solutions. Lancet Infect Dis 2013; 13:1057–1098 [View Article] [PubMed]
    [Google Scholar]
  2. Lewis K. The science of antibiotic discovery. Cell 2020; 181:29–45 [View Article] [PubMed]
    [Google Scholar]
  3. CDC Antibiotic Resistance Threats in the United States; 2019
  4. D’Costa VM, King CE, Kalan L, Morar M, Sung WWL et al. Antibiotic resistance is ancient. Nature 2011; 477:457–461 [View Article] [PubMed]
    [Google Scholar]
  5. Larsen J, Raisen CL, Ba X, Sadgrove NJ, Padilla-González GF et al. Emergence of methicillin resistance predates the clinical use of antibiotics. Nature 2022; 602:135–141 [View Article] [PubMed]
    [Google Scholar]
  6. WHO Antimicrobial Resistance; 2021 https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance accessed 15 March 2023
  7. Van Boeckel TP, Brower C, Gilbert M, Grenfell BT, Levin SA et al. Global trends in antimicrobial use in food animals. Proc Natl Acad Sci 2015; 112:5649–5654 [View Article] [PubMed]
    [Google Scholar]
  8. WHO Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics.pdf; 2017
  9. Piddock LJV. Multidrug-resistance efflux pumps - not just for resistance. Nat Rev Microbiol 2006; 4:629–636 [View Article] [PubMed]
    [Google Scholar]
  10. Webber MA, Piddock LJV. The importance of efflux pumps in bacterial antibiotic resistance. J Antimicrob Chemother 2003; 51:9–11 [View Article] [PubMed]
    [Google Scholar]
  11. Poole K. Efflux-mediated resistance to fluoroquinolones in gram-positive bacteria and the mycobacteria. Antimicrob Agents Chemother 2000; 44:2595–2599 [View Article] [PubMed]
    [Google Scholar]
  12. Piddock LJV. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin Microbiol Rev 2006; 19:382–402 [View Article] [PubMed]
    [Google Scholar]
  13. Bazzi W, Abou Fayad AG, Nasser A, Haraoui L-P, Dewachi O et al. Heavy metal toxicity in armed conflicts potentiates AMR in A. baumannii by selecting for antibiotic and heavy metal co-resistance mechanisms. Front Microbiol 2020; 11:68 [View Article] [PubMed]
    [Google Scholar]
  14. Gaurav A, Sharma A, Pathania R. Efflux Mediated Co-resistance. Mandal SM, Paul D. Bacterial Adaptation to Co-Resistance Singapore: Springer Singapore; 2019161–180
    [Google Scholar]
  15. Nies DH. Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 2003; 27:313–339 [View Article] [PubMed]
    [Google Scholar]
  16. Du D, Wang-Kan X, Neuberger A, van Veen HW, Pos KM et al. Multidrug efflux pumps: structure, function and regulation. Nat Rev Microbiol 2018; 16:523–539 [View Article] [PubMed]
    [Google Scholar]
  17. Sharma A, Gupta VK, Pathania R. Efflux pump inhibitors for bacterial pathogens: From bench to bedside. Indian J Med Res 2019; 149:129 [View Article]
    [Google Scholar]
  18. Lubelski J, Konings WN, Driessen AJM. Distribution and physiology of ABC-type transporters contributing to multidrug resistance in bacteria. Microbiol Mol Biol Rev 2007; 71:463–476 [View Article] [PubMed]
    [Google Scholar]
  19. Dean M, Moitra K, Allikmets R. The human ATP-binding cassette (ABC) transporter superfamily. Hum Mutat 2022; 43:1162–1182 [View Article] [PubMed]
    [Google Scholar]
  20. Rees DC, Johnson E, Lewinson O. ABC transporters: the power to change. Nat Rev Mol Cell Biol 2009; 10:218–227 [View Article] [PubMed]
    [Google Scholar]
  21. Thomas C, Tampé R. Structural and mechanistic principles of ABC transporters. Annu Rev Biochem 2020; 89:605–636 [View Article] [PubMed]
    [Google Scholar]
  22. Tarling EJ, Vallim TQ de A, Edwards PA. Role of ABC transporters in lipid transport and human disease. Trends in Endocrinol Metab 2013; 24:342–350 [View Article]
    [Google Scholar]
  23. Javed W, Vallet S, Clement M-P, Le Roy A, Moulin M et al. Structural insights into the catalytic cycle of a bacterial multidrug ABC efflux pump. J Mol Biol 2022; 434:167541 [View Article] [PubMed]
    [Google Scholar]
  24. Akhtar AA, Turner DP. The role of bacterial ATP-binding cassette (ABC) transporters in pathogenesis and virulence: therapeutic and vaccine potential. Microb Pathog 2022; 171:105734 [View Article] [PubMed]
    [Google Scholar]
  25. Bogomolnaya LM, Andrews KD, Talamantes M, Maple A, Ragoza Y et al. The ABC-type efflux pump MacAB protects Salmonella enterica serovar typhimurium from oxidative stress. mBio 2013; 4:e00630–13 [View Article] [PubMed]
    [Google Scholar]
  26. Palmer LD, Skaar EP. Transition metals and virulence in bacteria. Annu Rev Genet 2016; 50:67–91 [View Article] [PubMed]
    [Google Scholar]
  27. Schwan WR, Warrener P, Keunz E, Stover CK, Folger KR. Mutations in the cueA gene encoding a copper homeostasis P-type ATPase reduce the pathogenicity of Pseudomonas aeruginosa in mice. Int J Med Microbiol 2005; 295:237–242 [View Article] [PubMed]
    [Google Scholar]
  28. Francis MS, Thomas CJ. Mutants in the CtpA copper transporting P-type ATPase reduce virulence of Listeria monocytogenes. Microb Pathog 1997; 22:67–78 [View Article] [PubMed]
    [Google Scholar]
  29. Ward SK, Abomoelak B, Hoye EA, Steinberg H, Talaat AM. CtpV: a putative copper exporter required for full virulence of Mycobacterium tuberculosis. Mol Microbiol 2010; 77:1096–1110 [View Article] [PubMed]
    [Google Scholar]
  30. Nikaido H. RND transporters in the living world. Res Microbiol 2018; 169:363–371 [View Article] [PubMed]
    [Google Scholar]
  31. Breyton C, Haase W, Rapoport TA, Kühlbrandt W, Collinson I. Three-dimensional structure of the bacterial protein-translocation complex SecYEG. Nature 2002; 418:662–665 [View Article] [PubMed]
    [Google Scholar]
  32. Klenotic PA, Moseng MA, Morgan CE, Yu EW. Structural and functional diversity of resistance-nodulation-cell division transporters. Chem Rev 2021; 121:5378–5416 [View Article] [PubMed]
    [Google Scholar]
  33. Tseng TT, Gratwick KS, Kollman J, Park D, Nies DH et al. The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins. J Mol Microbiol Biotechnol 1999; 1:107–125 [PubMed]
    [Google Scholar]
  34. Neuberger A, Du D, Luisi BF. Structure and mechanism of bacterial tripartite efflux pumps. Res Microbiol 2018; 169:401–413 [View Article] [PubMed]
    [Google Scholar]
  35. Alav I, Kobylka J, Kuth MS, Pos KM, Picard M et al. Structure, assembly, and function of tripartite efflux and type 1 secretion systems in gram-negative bacteria. Chem Rev 2021; 121:5479–5596 [View Article] [PubMed]
    [Google Scholar]
  36. Symmons MF, Marshall RL, Bavro VN. Architecture and roles of periplasmic adaptor proteins in tripartite efflux assemblies. Front Microbiol 2015; 6:513 [View Article] [PubMed]
    [Google Scholar]
  37. McNeil HE, Alav I, Torres RC, Rossiter AE, Laycock E et al. Identification of binding residues between Periplasmic Adapter Protein (PAP) and RND efflux pumps explains PAP-pump promiscuity and roles in antimicrobial resistance. PLoS Pathog 2019; 15:e1008101 [View Article] [PubMed]
    [Google Scholar]
  38. Fàbrega A, Vila J. Salmonella enterica serovar Typhimurium skills to succeed in the host: virulence and regulation. Clin Microbiol Rev 2013; 26:308–341 [View Article] [PubMed]
    [Google Scholar]
  39. Alav I, Bavro VN, Blair JMA. A role for the periplasmic adaptor protein AcrA in vetting substrate access to the RND efflux transporter AcrB. Sci Rep 2022; 12:4752 [View Article] [PubMed]
    [Google Scholar]
  40. Spaniol V, Bernhard S, Aebi C. Moraxella catarrhalis AcrAB-OprM efflux pump contributes to antimicrobial resistance and is enhanced during cold shock response. Antimicrob Agents Chemother 2015; 59:1886–1894 [View Article] [PubMed]
    [Google Scholar]
  41. Wang-Kan X, Blair JMA, Chirullo B, Betts J, La Ragione RM et al. Lack of AcrB efflux function confers loss of virulence on Salmonella enterica serovar Typhimurium. mBio 2017; 8:e00968–00917 [View Article]
    [Google Scholar]
  42. Fanelli G, Pasqua M, Prosseda G, Grossi M, Colonna B. AcrAB efflux pump impacts on the survival of adherent-invasive Escherichia coli strain LF82 inside macrophages. Sci Rep 2023; 13: [View Article]
    [Google Scholar]
  43. Yan N. Structural advances for the major facilitator superfamily (MFS) transporters. Trends Biochem Sci 2013; 38:151–159 [View Article]
    [Google Scholar]
  44. Pao SS, Paulsen IT, Saier MH. Major facilitator superfamily. Microbiol Mol Biol Rev 1998; 62:1–34 [View Article] [PubMed]
    [Google Scholar]
  45. Yan N. Structural biology of the major facilitator superfamily transporters. Annu Rev Biophys 2015; 44:257–283 [View Article] [PubMed]
    [Google Scholar]
  46. Radestock S, Forrest LR. The alternating-access mechanism of MFS transporters arises from inverted-topology repeats. J Mol Biol 2011; 407:698–715 [View Article] [PubMed]
    [Google Scholar]
  47. Drew D, North RA, Nagarathinam K, Tanabe M. Structures and general transport mechanisms by the Major Facilitator Superfamily (MFS). Chem Rev 2021; 121:5289–5335 [View Article] [PubMed]
    [Google Scholar]
  48. Zhai G, Zhang Z, Dong C. Mutagenesis and functional analysis of SotB: a multidrug transporter of the major facilitator superfamily from Escherichia coli. Front Microbiol 2022; 13:1024639 [View Article] [PubMed]
    [Google Scholar]
  49. Pasqua M, Bonaccorsi di Patti MC, Fanelli G, Utsumi R, Eguchi Y et al. Host - bacterial pathogen communication: the wily role of the multidrug efflux pumps of the MFS family. Front Mol Biosci 2021; 8:723274 [View Article] [PubMed]
    [Google Scholar]
  50. Sharma A, Sharma R, Bhattacharyya T, Bhando T, Pathania R. Fosfomycin resistance in Acinetobacter baumannii is mediated by efflux through a major facilitator superfamily (MFS) transporter-AbaF. J Antimicrob Chemother 2017; 72:68–74 [View Article] [PubMed]
    [Google Scholar]
  51. Lee EH, Shafer WM. The farAB-encoded efflux pump mediates resistance of gonococci to long-chained antibacterial fatty acids. Mol Microbiol 1999; 33:839–845 [View Article] [PubMed]
    [Google Scholar]
  52. Crimmins GT, Herskovits AA, Rehder K, Sivick KE, Lauer P et al. Listeria monocytogenes multidrug resistance transporters activate a cytosolic surveillance pathway of innate immunity. Proc Natl Acad Sci 2008; 105:10191–10196 [View Article] [PubMed]
    [Google Scholar]
  53. Morita Y, Kodama K, Shiota S, Mine T, Kataoka A et al. NorM, a putative multidrug efflux protein, of Vibrio parahaemolyticus and its homolog in Escherichia coli. Antimicrob Agents Chemother 1998; 42:1778–1782 [View Article] [PubMed]
    [Google Scholar]
  54. Brown MH, Paulsen IT, Skurray RA. The multidrug efflux protein NorM is a prototype of a new family of transporters. Mol Microbiol 1999; 31:394–395 [View Article] [PubMed]
    [Google Scholar]
  55. Miyauchi H, Moriyama S, Kusakizako T, Kumazaki K, Nakane T et al. Structural basis for xenobiotic extrusion by eukaryotic MATE transporter. Nat Commun 2017; 8:1633 [View Article] [PubMed]
    [Google Scholar]
  56. Hvorup RN, Winnen B, Chang AB, Jiang Y, Zhou X-F et al. The multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) exporter superfamily. Eur J Biochem 2003; 270:799–813 [View Article] [PubMed]
    [Google Scholar]
  57. Stephen J, Lekshmi M, Ammini P, Kumar SH, Varela MF. Membrane efflux pumps of pathogenic Vibrio species: role in antimicrobial resistance and virulence. Microorganisms 2022; 10:382 [View Article] [PubMed]
    [Google Scholar]
  58. Kim J, Cater RJ, Choy BC, Mancia F. Structural insights into transporter-mediated drug resistance in infectious diseases. J Mol Biol 2021; 433:167005 [View Article] [PubMed]
    [Google Scholar]
  59. Pérez-Varela M, Corral J, Aranda J, Barbé J. Roles of efflux pumps from different superfamilies in the surface-associated motility and virulence of Acinetobacter baumannii ATCC 17978. Antimicrob Agents Chemother 2019; 63:e02190–02118 [View Article] [PubMed]
    [Google Scholar]
  60. Paulsen IT, Skurray RA, Tam R, Saier MH Jr, Turner RJ et al. The SMR family: a novel family of multidrug efflux proteins involved with the efflux of lipophilic drugs. Mol Microbiol 1996; 19:1167–1175 [View Article] [PubMed]
    [Google Scholar]
  61. Van Bambeke F, Balzi E, Tulkens PM. Antibiotic efflux pumps. Biochem Pharmacol 2000; 60:457–470 [View Article] [PubMed]
    [Google Scholar]
  62. Gottschalk KE, Soskine M, Schuldiner S, Kessler H. A structural model of EmrE, A multi-drug transporter from Escherichia coli. Biophys J 2004; 86:3335–3348 [View Article] [PubMed]
    [Google Scholar]
  63. Chung YJ, Saier MH. Overexpression of the Escherichia coli sugE gene confers resistance to a narrow range of quaternary ammonium compounds. J Bacteriol 2002; 184:2543–2545 [View Article] [PubMed]
    [Google Scholar]
  64. Bay DC, Rommens KL, Turner RJ. Small multidrug resistance proteins: a multidrug transporter family that continues to grow. Biochim Biophys Acta 2008; 1778:1814–1838 [View Article] [PubMed]
    [Google Scholar]
  65. Rodrigues L, Villellas C, Bailo R, Viveiros M, Aínsa JA. Role of the Mmr efflux pump in drug resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2013; 57:751–757 [View Article] [PubMed]
    [Google Scholar]
  66. Balganesh M, Dinesh N, Sharma S, Kuruppath S, Nair AV et al. Efflux pumps of Mycobacterium tuberculosis play a significant role in antituberculosis activity of potential drug candidates. Antimicrob Agents Chemother 2012; 56:2643–2651 [View Article] [PubMed]
    [Google Scholar]
  67. Hassan KA, Liu Q, Henderson PJF, Paulsen IT. Homologs of the Acinetobacter baumannii AceI transporter represent a new family of bacterial multidrug efflux systems. mBio 2015; 6:e01982-14 [View Article] [PubMed]
    [Google Scholar]
  68. Hassan KA, Liu Q, Elbourne LDH, Ahmad I, Sharples D et al. Pacing across the membrane: the novel PACE family of efflux pumps is widespread in Gram-negative pathogens. Res Microbiol 2018; 169:450–454 [View Article] [PubMed]
    [Google Scholar]
  69. Bolla JR, Howes AC, Fiorentino F, Robinson CV. Assembly and regulation of the chlorhexidine-specific efflux pump AceI. Proc Natl Acad Sci USA 2020; 117:17011–17018 [View Article]
    [Google Scholar]
  70. Hassan KA, Naidu V, Edgerton JR, Mettrick KA, Liu Q et al. Short-chain diamines are the physiological substrates of PACE family efflux pumps. Proc Natl Acad Sci 2019; 116:18015–18020 [View Article] [PubMed]
    [Google Scholar]
  71. Zhao J, Hellwig N, Djahanschiri B, Khera R, Morgner N et al. Assembly and functional role of PACE transporter PA2880 from Pseudomonas aeruginosa. Microbiol Spectr 2022; 10:e0145321 [View Article] [PubMed]
    [Google Scholar]
  72. Gould IM. Coping with antibiotic resistance: the impending crisis. Int J Antimicrob Agents 2010; 36 Suppl 3:S1–2 [View Article] [PubMed]
    [Google Scholar]
  73. Brandt C, Makarewicz O, Fischer T, Stein C, Pfeifer Y et al. The bigger picture: the history of antibiotics and antimicrobial resistance displayed by scientometric data. Int J Antimicrob Agents 2014; 44:424–430 [View Article] [PubMed]
    [Google Scholar]
  74. Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 2010; 74:417–433 [View Article] [PubMed]
    [Google Scholar]
  75. Harvey AL. Natural products in drug discovery. Drug Discov Today 2008; 13:894–901 [View Article] [PubMed]
    [Google Scholar]
  76. Burt S. Essential oils: their antibacterial properties and potential applications in foods--a review. Int J Food Microbiol 2004; 94:223–253 [View Article] [PubMed]
    [Google Scholar]
  77. Dhyani R, Srivastava SK, Shankar K, Ghosh T, Beniwal A et al. A chemical genetic approach using genetically encoded reporters to detect and assess the toxicity of plant secondary metabolites against bacterial pathogens. J Hazard Mater 2021; 418:126399 [View Article] [PubMed]
    [Google Scholar]
  78. Li J-H, Vederas JC. Drug discovery and natural products: end of an era or an endless frontier?. Science 2009; 325:161–165 [View Article]
    [Google Scholar]
  79. Seukep AJ, Kuete V, Nahar L, Sarker SD, Guo M. Plant-derived secondary metabolites as the main source of efflux pump inhibitors and methods for identification. J Pharm Anal 2020; 10:277–290 [View Article] [PubMed]
    [Google Scholar]
  80. Lewis K. In search of natural substrates and inhibitors of MDR pumps. J Mol Microbiol Biotechnol 2001; 3:247–254 [PubMed]
    [Google Scholar]
  81. Sun X, Vilar S, Tatonetti NP. High-throughput methods for combinatorial drug discovery. Sci Transl Med 2013; 5:205 [View Article]
    [Google Scholar]
  82. Mithöfer A, Boland W. Plant defense against herbivores: chemical aspects. Annu Rev Plant Biol 2012; 63:431–450 [View Article]
    [Google Scholar]
  83. Stermitz FR, Lorenz P, Tawara JN, Zenewicz LA, Lewis K. Synergy in a medicinal plant: antimicrobial action of berberine potentiated by 5’-methoxyhydnocarpin, a multidrug pump inhibitor. Proc Natl Acad Sci 2000; 97:1433–1437 [View Article] [PubMed]
    [Google Scholar]
  84. Stermitz FR, Tawara-Matsuda J, Lorenz P, Mueller P, Zenewicz L et al. 5’-Methoxyhydnocarpin-D and pheophorbide A: Berberis species components that potentiate berberine growth inhibition of resistant Staphylococcus aureus. J Nat Prod 2000; 63:1146–1149 [View Article] [PubMed]
    [Google Scholar]
  85. Guz NR, Stermitz FR, Johnson JB, Beeson TD, Willen S et al. Flavonolignan and flavone inhibitors of a Staphylococcus aureus multidrug resistance pump: structure-activity relationships. J Med Chem 2001; 44:261–268 [View Article] [PubMed]
    [Google Scholar]
  86. Hirakata Y, Kondo A, Hoshino K, Yano H, Arai K et al. Efflux pump inhibitors reduce the invasiveness of Pseudomonas aeruginosa. Int J Antimicrob Agents 2009; 34:343–346 [View Article] [PubMed]
    [Google Scholar]
  87. Markham PN, Westhaus E, Klyachko K, Johnson ME, Neyfakh AA. Multiple novel inhibitors of the NorA multidrug transporter of Staphylococcus aureus. Antimicrob Agents Chemother 1999; 43:2404–2408 [View Article] [PubMed]
    [Google Scholar]
  88. Bhattacharyya T, Sharma A, Akhter J, Pathania R. The small molecule IITR08027 restores the antibacterial activity of fluoroquinolones against multidrug-resistant Acinetobacter baumannii by efflux inhibition. Int J Antimicrob Agents 2017; 50:219–226 [View Article] [PubMed]
    [Google Scholar]
  89. Blair JMA, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJV. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol 2015; 13:42–51 [View Article] [PubMed]
    [Google Scholar]
  90. Darby EM, Trampari E, Siasat P, Gaya MS, Alav I et al. Molecular mechanisms of antibiotic resistance revisited. Nat Rev Microbiol 2023; 21:280–295 [View Article] [PubMed]
    [Google Scholar]
  91. Blair JMA, Richmond GE, Piddock LJV. Multidrug efflux pumps in Gram-negative bacteria and their role in antibiotic resistance. Future Microbiol 2014; 9:1165–1177 [View Article] [PubMed]
    [Google Scholar]
  92. Schindler BD, Kaatz GW. Multidrug efflux pumps of Gram-positive bacteria. Drug Resist Updat 2016; 27:1–13 [View Article] [PubMed]
    [Google Scholar]
  93. Rineh A, Dolla NK, Ball AR, Magana M, Bremner JB et al. Attaching the NorA efflux pump inhibitor INF55 to methylene blue enhances antimicrobial photodynamic inactivation of methicillin-resistant Staphylococcus aureus in vitro and in vivo. ACS Infect Dis 2017; 3:756–766 [View Article] [PubMed]
    [Google Scholar]
  94. Ball AR, Casadei G, Samosorn S, Bremner JB, Ausubel FM et al. Conjugating berberine to a multidrug efflux pump inhibitor creates an effective antimicrobial. ACS Chem Biol 2006; 1:594–600 [View Article] [PubMed]
    [Google Scholar]
  95. Lomovskaya O, Warren MS, Lee A, Galazzo J, Fronko R et al. Identification and characterization of inhibitors of multidrug resistance efflux pumps in Pseudomonas aeruginosa: novel agents for combination therapy. Antimicrob Agents Chemother 2001; 45:105–116 [View Article] [PubMed]
    [Google Scholar]
  96. Kern WV, Steinke P, Schumacher A, Schuster S, Baum H von et al. Effect of 1-(1-naphthylmethyl)-piperazine, a novel putative efflux pump inhibitor, on antimicrobial drug susceptibility in clinical isolates of Escherichia coli. J Antimicrob Chemother 2006; 57:339–343 [View Article]
    [Google Scholar]
  97. Yoshida K, Nakayama K, Ohtsuka M, Kuru N, Yokomizo Y et al. MexAB-OprM specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 7: highly soluble and in vivo active quaternary ammonium analogue D13-9001, a potential preclinical candidate. Bioorg Med Chem 2007; 15:7087–7097 [View Article]
    [Google Scholar]
  98. Opperman TJ, Kwasny SM, Kim H-S, Nguyen ST, Houseweart C et al. Characterization of a novel pyranopyridine inhibitor of the AcrAB efflux pump of Escherichia coli. Antimicrob Agents Chemother 2014; 58:722–733 [View Article]
    [Google Scholar]
  99. Grimsey EM, Fais C, Marshall RL, Ricci V, Ciusa ML et al. Chlorpromazine and amitriptyline are substrates and inhibitors of the AcrB multidrug efflux pump. mBio 2020; 11:e00465-20 [View Article] [PubMed]
    [Google Scholar]
  100. Li X-Z, Plésiat P, Nikaido H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev 2015; 28:337–418 [View Article] [PubMed]
    [Google Scholar]
  101. Hou T, Wang J. Structure-ADME relationship: still a long way to go?. Expert Opin Drug Metab Toxicol 2008; 4:759–770 [View Article] [PubMed]
    [Google Scholar]
  102. Rogers D, Hahn M. Extended-connectivity fingerprints. J Chem Inf Model 2010; 50:742–754 [View Article] [PubMed]
    [Google Scholar]
  103. Mauri A, Consonni V, Pavan M, Todeschini R. Dragon software: an easy approach to molecular descriptor calculations. Match 2006; 56:237–248
    [Google Scholar]
  104. Stokes JM, Yang K, Swanson K, Jin W, Cubillos-Ruiz A et al. A deep learning approach to antibiotic discovery. Cell 2020; 180:688–702 [View Article]
    [Google Scholar]
  105. Yang K, Swanson K, Jin W, Coley C, Eiden P et al. Analyzing learned molecular representations for property prediction. J Chem Inf Model 2019; 59:3370–3388 [View Article]
    [Google Scholar]
  106. Torres MDT, Melo MCR, Flowers L, Crescenzi O, Notomista E et al. Author Correction: mining for encrypted peptide antibiotics in the human proteome. Nat Biomed Eng 2022; 6:1451 [View Article] [PubMed]
    [Google Scholar]
  107. Das P, Sercu T, Wadhawan K, Padhi I, Gehrmann S et al. Accelerated antimicrobial discovery via deep generative models and molecular dynamics simulations. Nat Biomed Eng 2021; 5:613–623 [View Article]
    [Google Scholar]
  108. Porto WF, Irazazabal L, Alves ESF, Ribeiro SM, Matos CO et al. In silico optimization of a guava antimicrobial peptide enables combinatorial exploration for peptide design. Nat Commun 2018; 9:1490 [View Article] [PubMed]
    [Google Scholar]
  109. Kumar A, Khan IA, Koul S, Koul JL, Taneja SC et al. Novel structural analogues of piperine as inhibitors of the NorA efflux pump of Staphylococcus aureus. J Antimicrob Chemother 2008; 61:1270–1276 [View Article] [PubMed]
    [Google Scholar]
  110. Renau TE, Léger R, Flamme EM, Sangalang J, She MW et al. Inhibitors of efflux pumps in Pseudomonas aeruginosa potentiate the activity of the fluoroquinolone antibacterial levofloxacin. J Med Chem 1999; 42:4928–4931 [View Article] [PubMed]
    [Google Scholar]
  111. Bohnert JA, Kern WV. Selected arylpiperazines are capable of reversing multidrug resistance in Escherichia coli overexpressing RND efflux pumps. Antimicrob Agents Chemother 2005; 49:849–852 [View Article] [PubMed]
    [Google Scholar]
  112. Nakayama K, Ishida Y, Ohtsuka M, Kawato H, Yoshida K et al. MexAB-OprM-Specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 1: Discovery and early strategies for lead optimization. Bioorg Med Chem Lett 2003; 13:4201–4204 [View Article]
    [Google Scholar]
  113. Sterling T, Irwin JJ. ZINC 15 – ligand discovery for everyone. J Chem Inf Model 2015; 55:2324–2337 [View Article]
    [Google Scholar]
  114. Whittle EE, McNeil HE, Trampari E, Webber M, Overton TW et al. Efflux impacts intracellular accumulation only in actively growing bacterial cells. mBio 2021; 12: [View Article]
    [Google Scholar]
  115. Lomovskaya O, Bostian KA. Practical applications and feasibility of efflux pump inhibitors in the clinic—A vision for applied use. Biochem Pharmacol 2006; 71:910–918 [View Article]
    [Google Scholar]
  116. Tseng TT, Gratwick KS, Kollman J, Park D, Nies DH et al. The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins. J Mol Microbiol Biotechnol 1999; 1:107–125 [PubMed]
    [Google Scholar]
  117. Higgins CF. ABC transporters: from microorganisms to man. Annu Rev Cell Biol 1992; 8:67–113 [View Article]
    [Google Scholar]
  118. Dassa E, Hofnung M. Sequence of gene malG in E. coli K12: homologies between integral membrane components from binding protein-dependent transport systems. EMBO J 1985; 4:2287–2293 [View Article]
    [Google Scholar]
  119. Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S et al. ColabFold: making protein folding accessible to all. Nat Methods 2022; 19:679–682 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001333
Loading
/content/journal/micro/10.1099/mic.0.001333
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error