1887

Abstract

Systematic inactivation of genes has previously revealed that 271 are indispensable for growth. In the present study, 11 of these (, , , , , , , , , and ) were identified as genes encoding proteins of unknown function. By analysing the effects of protein depletion, and examining the subcellular localization of these proteins, a start has been made in elucidating their functions. It was found that four of these genes (, , and ) were not required for viability. Analysis of the localization of YkqC suggests that it co-localizes with ribosomes, and it is proposed that it is involved in processing either rRNA or specific mRNAs when they are associated with the ribosome. The results suggest that other novel essential proteins may be involved in lipid synthesis and control of cell wall synthesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.29152-0
2006-10-01
2020-04-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/10/2895.html?itemId=/content/journal/micro/10.1099/mic.0.29152-0&mimeType=html&fmt=ahah

References

  1. Akerley B. J, Rubin E. J, Novick V. L, Amaya K, Judson N, Mekalanos J. J. 2002; A genome-scale analysis for identification of genes required for growth or survival of Haemophilus influenzae . Proc Natl Acad Sci U S A99:966–971[CrossRef]
    [Google Scholar]
  2. Allali-Hassani A, Campbell T. L, Ho A, Schertzer J. W, Brown E. D. 2004; Probing the active site of YjeE: a vital Escherichia coli protein of unknown function. Biochem J384:577–584[CrossRef]
    [Google Scholar]
  3. Allsop A. E. 1998; New antibiotic discovery, novel screens, novel targets and impact of microbial genomics. Curr Opin Microbiol1:530–534[CrossRef]
    [Google Scholar]
  4. Anagnostopoulos C, Spizizen J. 1961; Requirements for transformation in Bacillus subtilis . J Bacteriol81:741–746
    [Google Scholar]
  5. Aravind L, Koonin E. V. 1998; The HD domain defines a new superfamily of metal-dependent phosphohydrolases. Trends Biochem Sci23:469–472[CrossRef]
    [Google Scholar]
  6. Arigoni F, Talabot F, Peitsch M.7 other authors 1998; A genome-based approach for the identification of essential bacterial genes. Nat Biotechnol16:851–856[CrossRef]
    [Google Scholar]
  7. Butland G, Peregrin-Alvarez J. M, Li J.11 other authors 2005; Interaction network containing conserved and essential protein complexes in Escherichia coli . Nature433:531–537[CrossRef]
    [Google Scholar]
  8. Campbell T, Daigle D. M, Brown E. D. 2005; Characterization of the Bacillus subtilis GTPase YloQ and its role in ribosome function. Biochem J389:843–852[CrossRef]
    [Google Scholar]
  9. Condon C. 2003; RNA processing and degradation in Bacillus subtilis . Microbiol Mol Biol Rev67:157–174[CrossRef]
    [Google Scholar]
  10. Even S, Pellegrini O, Zig L, Labas V, Vinh J, Brechemmier-Baey D, Putzer H. 2005; Ribonucleases J1 and J2: two novel endoribonucleases in B. subtilis with functional homology to E. coli RNase E. Nucleic Acids Res33:2141–2152[CrossRef]
    [Google Scholar]
  11. Fabret C, Ehrlich S. D, Noirot P. 2002; A new mutation delivery system for genome-scale approaches in Bacillus subtilis . Mol Microbiol46:25–36[CrossRef]
    [Google Scholar]
  12. Formstone A, Errington J. 2005; A magnesium-dependent mreB null mutant: implications for the role of mreB in Bacillus subtilis . Mol Microbiol55:1646–1657[CrossRef]
    [Google Scholar]
  13. Forsyth R. A, Haselbaeck R. J, Ohlsen K. L. 20 other authors 2002; A genome-wide strategy for the identification of essential genes in Staphylococcus aureus . Mol Microbiol43:1387–1400[CrossRef]
    [Google Scholar]
  14. Freiberg C, Wieland B, Spaltmann F, Ehlert K, Brotz H, Labischinski H. 2001; Identification of novel essential Escherichia coli genes conserved among pathogenic bacteria. J Mol Microbiol Biotechnol3:483–489
    [Google Scholar]
  15. Glaser P, Sharpe M. E, Raether B, Perego M, Ohlsen K, Errington J. 1997; Dynamic, mitotic-like behavior of a bacterial protein required for accurate chromosome partitioning. Genes Dev11:1160–1168[CrossRef]
    [Google Scholar]
  16. Hutchison C. A, Peterson S. N, Gill S. R, Cline R. T, White O, Fraser C. M, Smith H. O, Venter J. C. 1999; Global transposon mutagenesis and a minimal Mycoplasma genome. Science286:2165–2169[CrossRef]
    [Google Scholar]
  17. Ji Y, Zhang B, Van Horn S. F, Warren P, Woodnutt G, Burnham M. K. R, Rosenberg M. 2001; Identification of critical staphylococcal genes using conditional phenotypes generated by antisense RNA. Science293:2266–2269[CrossRef]
    [Google Scholar]
  18. Kobayashi K, Ehrlich S. D, Albertini A.96 other authors 2003; Essential Bacillus subtilis genes. Proc Natl Acad Sci U S A100:4678–4683
    [Google Scholar]
  19. Leaver M, Errington J. 2005; Roles for MreC and MreD proteins in helical growth of the cylindrical cell wall in Bacillus subtilis . Mol Microbiol57:1196–1209[CrossRef]
    [Google Scholar]
  20. Lemon K. P, Grossman A. D. 1998; Localization of bacterial DNA polymerase: evidence for a factory model of replication. Science282:1430–1431[CrossRef]
    [Google Scholar]
  21. Lewis P. J, Errington J. 1997; Direct evidence for active chromosome segregation of oriC regions of the Bacillus subtilis chromosome and co-localization with the Spo0J partitioning protein. Mol Microbiol25:945–954[CrossRef]
    [Google Scholar]
  22. Lewis P. J, Marston A. L. 1999; GFP vectors for controlled expression and dual labelling of protein fusions in Bacillus subtilis . Gene227:101–109[CrossRef]
    [Google Scholar]
  23. Lewis P. J, Thaker S. D, Errington J. 2000; Compartmentalization of transcription and translation in Bacillus subtilis . EMBO J19:710–718[CrossRef]
    [Google Scholar]
  24. Ostheimer G. J, Barkan A, Matthews B. W. 2002; Crystal structure of E. coli YhbY: a representative of a novel class of RNA binding proteins. Structure10:1593–1601[CrossRef]
    [Google Scholar]
  25. Pellegrini O, Nezzar J, Marchfelder A, Putzer H, Condon C. 2003; Endonucleolytic processing of CCA-less tRNA precursors by RNase Z in Bacillus subtilis . EMBO J22:4534–4543[CrossRef]
    [Google Scholar]
  26. Quisel J. D, Burkholder W. F, Grossman A. D. 2001; In vivo effects of sporulation kinases on mutant Spo0A proteins in Bacillus subtilis . J Bacteriol183:6573–6578[CrossRef]
    [Google Scholar]
  27. Rothfield L, Taghbalout A, Shih Y. L. 2005; Spatial control of bacterial division-site placement. Nat Rev Microbiol3:959–968[CrossRef]
    [Google Scholar]
  28. Sambrook J, Fritsch E. F, Maniatis T. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  29. Sharpe M. E, Hauser P. M, Sharpe R. G, Errington J. 1998; Bacillus subtilis cell cycle as studied by fluorescence microscopy: constancy of cell length at initiation of DNA replication and evidence for active nucleoid partitioning. J Bacteriol180:547–555
    [Google Scholar]
  30. Soma A, Ikeuchi Y, Kanemasa S.7 other authors 2003; An RNA-modifying enzyme that governs both the codon and amino acid specificities of isoleucine tRNA. Mol Cell12:689–698[CrossRef]
    [Google Scholar]
  31. Sterlini J. M, Mandelstam J. 1969; Commitment to sporulation in Bacillus subtilis and its relationship to development of actinomycin resistance. Biochem J113:29–37
    [Google Scholar]
  32. Teplova M, Tereshko V, Sanishvili R, Joachimiak A, Bushueva T, Anderson W. F, Egli M. 2000; The structure of the yrdC gene product from Escherichia coli reveals a new fold and suggests a role in RNA binding. Protein Sci9:2557–2566[CrossRef]
    [Google Scholar]
  33. Teplyakov A, Obmolova G, Tordova M, Thanki N, Bonander N, Eisenstein E, Howard A. J, Gilliland G. L. 2002; Crystal structure of the YjeE protein from Haemophilus influenzae : a putative ATPase involved in cell wall synthesis. Proteins48:220–226[CrossRef]
    [Google Scholar]
  34. Thanassi J. A, Hartman-Neumann S. L, Dougherty T. J, Dougherty B. A, Pucci M. J. 2002; Identification of 113 conserved essential genes using a high-throughput gene disruption system in Streptococcus pneumoniae . Nucleic Acids Res30:3152–3162[CrossRef]
    [Google Scholar]
  35. Thomaides H. B. 1999; Identification and characterisation of genes involved in cell division and sporulation in Bacillus subtilis DPhil thesis University of Oxford;
    [Google Scholar]
  36. Vagner V, Dervyn E, Ehrlich S. D. 1998; A vector for systematic gene inactivation in Bacillus subtilis . Microbiology144:3097–3104[CrossRef]
    [Google Scholar]
  37. von Heijne G. 1992; Membrane protein structure prediction: hydrophobicity analysis and the positive-inside rule. J Mol Biol225:487–494[CrossRef]
    [Google Scholar]
  38. Wang B, Kuramitsu H. K. 2003; Assessment of the utilization of the antisense RNA strategy to identify essential genes in heterologous bacteria. FEMS Microbiol Lett220:171–176[CrossRef]
    [Google Scholar]
  39. Willis M. A, Krajewski W, Chalamasetty V. R, Reddy P, Howard A, Herzberg O. 2002; Structure of HI1333 (YhbY), a putative RNA-binding protein from Heamophilus influenzae . Proteins49:423–426[CrossRef]
    [Google Scholar]
  40. Zalacain M, Biswas S, Ingraham K. A.17 other authors 2003; A global approach to identify novel broad-spectrum antibacterial targets among proteins of unknown function. J Mol Microbiol Biotechnol6:109–126[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.29152-0
Loading
/content/journal/micro/10.1099/mic.0.29152-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error