1887

Abstract

is a common wood-rotting fungus parasitic for birch ( species). It is able to cause fast mass loss of birch wood or other lignocellulose substrates. When grown on wheat straw, caused 65 % loss of dry mass within 98 days, and it produced endo-1,4--glucanase (EG), endo-1,4--xylanase, endo-1,4--mannanase, 1,4--glucosidase (BG), 1,4--xylosidase, 1,4--mannosidase and cellobiohydrolase activities. The fungus was not able to efficiently degrade crystalline cellulose. The major glycosyl hydrolases, endoglucanase EG1 and -glucosidase BG1, were purified. EG1 was a protein of 62 kDa with a pI of 2.6–2.8. It cleaved cellulose internally, produced cellobiose and glucose from cellulose and cellooligosaccharides, and also showed -xylosidase and endoxylanase activities. The for carboxymethylcellulose was 3.5 g l, with the highest activity at pH 3.5 and 70 °C. BG1 was a protein of 36 kDa with a pI around 2.6. It was able to produce glucose from cellobiose and cellooligosaccharides, but also produced galactose, mannose and xylose from the respective oligosaccharides and showed some cellobiohydrolase activity. The for -nitrophenyl-1,4--glucoside was 1.8 mM, with the highest activity at pH 4 and 60 °C, and the enzyme was competitively inhibited by glucose ( =5.8 mM). The fungus produced mainly -glucosidase and -mannosidase activity in its fruit bodies, while higher activities of endoglucanase, endoxylanase and -xylosidase were found in fungus-colonized wood.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.29149-0
2006-12-01
2020-10-01
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/12/3613.html?itemId=/content/journal/micro/10.1099/mic.0.29149-0&mimeType=html&fmt=ahah

References

  1. Bailey P. J, Liese W, Roesch R, Keilich G, Afting E. G. 1969; Cellulase (beta-1,4-glucan 4-glucanohydrolase) from the wood-degrading fungus Polyporus schweinitzii Fr. Biochim Biophys Acta185:381–391[CrossRef]
    [Google Scholar]
  2. Baldrian P, Gabriel J. 2002; Intraspecific variability in growth response to cadmium of the wood-rotting fungus Piptoporus betulinus . Mycologia94:428–436[CrossRef]
    [Google Scholar]
  3. Baldrian P, Gabriel J. 2003; Lignocellulose degradation by Pleurotus ostreatus in the presence of cadmium. FEMS Microbiol Lett220:235–240[CrossRef]
    [Google Scholar]
  4. Baldrian P, Gabriel J, Nerud F, Zadrazil F, in der Wiesche C. 2000; Influence of cadmium and mercury on activities of ligninolytic enzymes and degradation of polycyclic aromatic hydrocarbons by Pleurotus ostreatus in soil. Appl Environ Microbiol66:2471–2478[CrossRef]
    [Google Scholar]
  5. Baldrian P, Gabriel J, Valášková V, Merhautová V. 2005; Degradation of lignocellulose by Pleurotus ostreatus in the presence of copper, manganese, lead and zinc. Res Microbiol156:670–676[CrossRef]
    [Google Scholar]
  6. Beguin P, Aubert J. P. 1994; The biological degradation of cellulose. FEMS Microbiol Rev13:25–58[CrossRef]
    [Google Scholar]
  7. Bell M. K, Burnett J. H. 1966; Cellulase activity of Piptoporus betulinus . Ann Appl Biol58:123–130[CrossRef]
    [Google Scholar]
  8. Bhattacharjee B, Roy A, Majumder A. L. 1993; Carboxymethylcellulase from Lenzites sepiaria , a brown-rotter. Biochem Mol Biol Int30:1143–1152
    [Google Scholar]
  9. Bourbonnais R, Paice M. G. 1990; Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation. FEBS Lett267:99–102[CrossRef]
    [Google Scholar]
  10. Bradford M. M. 1976; Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal Biochem72:248–254[CrossRef]
    [Google Scholar]
  11. Cai Y. J, Buswell J. A, Chang S. T. 1998; β -Glucosidase components of the cellulolytic system of the edible straw mushroom, Volvariella volvacea . Enzyme Microb Technol22:122–129[CrossRef]
    [Google Scholar]
  12. Clausen C. A. 1995; Dissociation of the multienzyme complex of the brown-rot fungus Postia placenta . FEMS Microbiol Lett127:73–78[CrossRef]
    [Google Scholar]
  13. Cohen R, Suzuki M. R, Hammel K. E. 2005; Processive endoglucanase active in crystalline cellulose hydrolysis by the brown rot basidiomycete Gloeophyllum trabeum . Appl Environ Microbiol71:2412–2417[CrossRef]
    [Google Scholar]
  14. Copa-Patino J. L, Broda P. 1994; Phanerochaete chrysosporium β -d-glucosidase/ β -d-xylosidase with specificity for (1→3)- β -d-glucan linkages. Carbohydrate Res253:265–275[CrossRef]
    [Google Scholar]
  15. Cotoras M, Agosin E. 1992; Regulatory aspects of endoglucanase production by the brown-rot fungus Gloeophyllum trabeum . Exp Mycol16:253–260[CrossRef]
    [Google Scholar]
  16. Deshpande M. V, Eriksson K. E, Pettersson G. 1978; Production, purification and partial characterization of 1,4- β -glucosidase enzymes from Sporotrichum pulverulentum . Eur J Biochem90:191–198[CrossRef]
    [Google Scholar]
  17. Dvořáková J, Schmidt D, Huňková Z, Thiem J, Křen V. 2001; Enzymatic rearrangement of chitine hydrolysates with [ β ]- N -acetylhexosaminidase from Aspergillus oryzae . J Mol Catal B: Enzymatic11:225–232[CrossRef]
    [Google Scholar]
  18. Eriksson K.-E. L, Blanchette R. A, Ander P. 1990; Microbial and Enzymatic Degradation of Wood and Wood Components Berlin: Springer;
  19. Gilbertson R. L, Ryvarden L. 1986; North American Polypores Oslo: Fungiflora;
  20. Goodell B. 2003; Brown-rot fungal degradation of wood: our evolving view. Wood Deterior Preserv845:97–118
    [Google Scholar]
  21. Hammel K. E, Kapich A. N, Jensen K. A, Ryan Z. C. 2002; Reactive oxygen species as agents of wood decay by fungi. Enzyme Microb Technol30:445–453[CrossRef]
    [Google Scholar]
  22. Herr D, Baumer F, Dellweg H. 1978a; Purification and properties of an extracellular endo-1,4- β -glucanase from Lenzites trabea . Arch Microbiol117:287–292[CrossRef]
    [Google Scholar]
  23. Herr D, Baumer F, Dellweg H. 1978b; Purification and properties of an extracellular beta-glucosidase from Lenzites trabea . Eur J Appl Microbiol Biotechnol5:29–36[CrossRef]
    [Google Scholar]
  24. Highley T. L. 1973; Influence of carbon source on cellulase activity of white-rot and brown-rot fungi. Wood Fiber5:50–58
    [Google Scholar]
  25. Hyde S. M, Wood P. M. 1997; A mechanism for production of hydroxyl radicals by the brown-rot fungus Coniophora puteana : Fe(III) reduction by cellobiose dehydrogenase and Fe(II) oxidation at a distance from the hyphae. Microbiology143:259–266[CrossRef]
    [Google Scholar]
  26. Ishihara M, Shimizu K. 1984; Purification and properties of two extracellular endo-cellulases from the brown-rotting fungus Tyromyces palustris . Mokuzai Gakkaishi30:79–87
    [Google Scholar]
  27. Jensen K. A, Houtman C. J, Ryan Z. C, Hammel K. E. 2001; Pathways for extracellular Fenton chemistry in the brown rot basidiomycete Gloeophyllum trabeum . Appl Environ Microbiol67:2705–2711[CrossRef]
    [Google Scholar]
  28. Keilich P, Bailey P. J, Afting E. J, Liese W. 1969; Cellulase from the wood-degrading fungus Polyporus schweinitzii Fr. Biochim Biophys Acta185:392–401[CrossRef]
    [Google Scholar]
  29. Kleman-Leyer K, Kirk T. K. 1994; Three native cellulose-depolymerizing endoglucanases from solid-substrate cultures of the brown-rot fungus Meruliporia ( Serpula ) incrassata . Appl Environ Microbiol60:2839–2845
    [Google Scholar]
  30. Lymar E. S, Li B, Renganathan V. 1995; Purification and characterization of a cellulose-binding β -glucosidase from cellulose-degrading cultures of Phanerochaete chrysosporium . Appl Environ Microbiol61:2976–2980
    [Google Scholar]
  31. Mansfield S. D, Saddler J. N, Gübitz G. M. 1998; Characterization of endoglucanases from the brown rot fungi Gloeophyllum sepiarium and Gloeophyllum trabeum . Enzyme Microb Technol23:133–140[CrossRef]
    [Google Scholar]
  32. Morais H, Ramos C, Matos N, Forgacs E, Cserhati T, Almeida V, Oliveira J, Darwish Y, Illes Z. 2002; Liquid chromatographic and electrophoretic characterisation of extracellular β -glucosidase of Pleurotus ostreatus grown in organic waste. J Chromatogr B770:111–119[CrossRef]
    [Google Scholar]
  33. Ngo T. T, Lenhoff H. M. 1980; A sensitive and versatile chromogenic assay for peroxidase and peroxidase-coupled reactions. Anal Biochem105:389–397[CrossRef]
    [Google Scholar]
  34. Sadana J. C, Patil R. V. 1988; 1,4- β -d-Glucan cellobiohydrolase from Sclerotium rolfsii . Methods Enzymol160:307–314
    [Google Scholar]
  35. Sethuraman A, Akin D. E, Eriksson K. E. 1998; Plant-cell-wall-degrading enzymes produced by the white-rot fungus Ceriporiopsis subvermispora . Biotechnol Appl Biochem27:37–47[CrossRef]
    [Google Scholar]
  36. Sison B. C, Schubert W. J, Nord F. F. 1958; On the mechanism of enzyme action. LXV. A cellulolytic enzyme from the mold Poria vaillantii . Arch Biochem Biophys75:260–272[CrossRef]
    [Google Scholar]
  37. Smith M. H, Gold M. H. 1979; Phanerochaete chrysosporium β -glucosidases: induction, cellular localization, and physical characterization. Appl Environ Microbiol37:938–942
    [Google Scholar]
  38. Takao S. 1965; Organic acid production by basidiomycetes I. Screening of acid-producing strains. Appl Microbiol13:732–737
    [Google Scholar]
  39. Temp U, Eggert C. 1999; Novel interaction between laccase and cellobiose dehydrogenase during pigment synthesis in the white rot fungus Pycnoporus cinnabarinus . Appl Environ Microbiol65:389–395
    [Google Scholar]
  40. Wei D. L, Kirimura K, Usami S, Lin T. H. 1996; Purification and characterization of an extracellular β -glucosidase from the wood-grown fungus Xylaria regalis . Curr Microbiol33:297–301[CrossRef]
    [Google Scholar]
  41. Wood T. M. 1988; Preparation of crystalline, amorphous, and dyed cellulase substrates. Methods Enzymol160:19–25
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.29149-0
Loading
/content/journal/micro/10.1099/mic.0.29149-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error