1887

Abstract

is a common wood-rotting fungus parasitic for birch ( species). It is able to cause fast mass loss of birch wood or other lignocellulose substrates. When grown on wheat straw, caused 65 % loss of dry mass within 98 days, and it produced endo-1,4--glucanase (EG), endo-1,4--xylanase, endo-1,4--mannanase, 1,4--glucosidase (BG), 1,4--xylosidase, 1,4--mannosidase and cellobiohydrolase activities. The fungus was not able to efficiently degrade crystalline cellulose. The major glycosyl hydrolases, endoglucanase EG1 and -glucosidase BG1, were purified. EG1 was a protein of 62 kDa with a pI of 2.6–2.8. It cleaved cellulose internally, produced cellobiose and glucose from cellulose and cellooligosaccharides, and also showed -xylosidase and endoxylanase activities. The for carboxymethylcellulose was 3.5 g l, with the highest activity at pH 3.5 and 70 °C. BG1 was a protein of 36 kDa with a pI around 2.6. It was able to produce glucose from cellobiose and cellooligosaccharides, but also produced galactose, mannose and xylose from the respective oligosaccharides and showed some cellobiohydrolase activity. The for -nitrophenyl-1,4--glucoside was 1.8 mM, with the highest activity at pH 4 and 60 °C, and the enzyme was competitively inhibited by glucose ( =5.8 mM). The fungus produced mainly -glucosidase and -mannosidase activity in its fruit bodies, while higher activities of endoglucanase, endoxylanase and -xylosidase were found in fungus-colonized wood.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.29149-0
2006-12-01
2019-11-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/12/3613.html?itemId=/content/journal/micro/10.1099/mic.0.29149-0&mimeType=html&fmt=ahah

References

  1. Bailey, P. J., Liese, W., Roesch, R., Keilich, G. & Afting, E. G. ( 1969; ). Cellulase (beta-1,4-glucan 4-glucanohydrolase) from the wood-degrading fungus Polyporus schweinitzii Fr. Biochim Biophys Acta 185, 381–391.[CrossRef]
    [Google Scholar]
  2. Baldrian, P. & Gabriel, J. ( 2002; ). Intraspecific variability in growth response to cadmium of the wood-rotting fungus Piptoporus betulinus. Mycologia 94, 428–436.[CrossRef]
    [Google Scholar]
  3. Baldrian, P. & Gabriel, J. ( 2003; ). Lignocellulose degradation by Pleurotus ostreatus in the presence of cadmium. FEMS Microbiol Lett 220, 235–240.[CrossRef]
    [Google Scholar]
  4. Baldrian, P., in der Wiesche, C., Gabriel, J., Nerud, F. & Zadrazil, F. ( 2000; ). Influence of cadmium and mercury on activities of ligninolytic enzymes and degradation of polycyclic aromatic hydrocarbons by Pleurotus ostreatus in soil. Appl Environ Microbiol 66, 2471–2478.[CrossRef]
    [Google Scholar]
  5. Baldrian, P., Valášková, V., Merhautová, V. & Gabriel, J. ( 2005; ). Degradation of lignocellulose by Pleurotus ostreatus in the presence of copper, manganese, lead and zinc. Res Microbiol 156, 670–676.[CrossRef]
    [Google Scholar]
  6. Beguin, P. & Aubert, J. P. ( 1994; ). The biological degradation of cellulose. FEMS Microbiol Rev 13, 25–58.[CrossRef]
    [Google Scholar]
  7. Bell, M. K. & Burnett, J. H. ( 1966; ). Cellulase activity of Piptoporus betulinus. Ann Appl Biol 58, 123–130.[CrossRef]
    [Google Scholar]
  8. Bhattacharjee, B., Roy, A. & Majumder, A. L. ( 1993; ). Carboxymethylcellulase from Lenzites sepiaria, a brown-rotter. Biochem Mol Biol Int 30, 1143–1152.
    [Google Scholar]
  9. Bourbonnais, R. & Paice, M. G. ( 1990; ). Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation. FEBS Lett 267, 99–102.[CrossRef]
    [Google Scholar]
  10. Bradford, M. M. ( 1976; ). Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal Biochem 72, 248–254.[CrossRef]
    [Google Scholar]
  11. Cai, Y. J., Buswell, J. A. & Chang, S. T. ( 1998; ). β-Glucosidase components of the cellulolytic system of the edible straw mushroom, Volvariella volvacea. Enzyme Microb Technol 22, 122–129.[CrossRef]
    [Google Scholar]
  12. Clausen, C. A. ( 1995; ). Dissociation of the multienzyme complex of the brown-rot fungus Postia placenta. FEMS Microbiol Lett 127, 73–78.[CrossRef]
    [Google Scholar]
  13. Cohen, R., Suzuki, M. R. & Hammel, K. E. ( 2005; ). Processive endoglucanase active in crystalline cellulose hydrolysis by the brown rot basidiomycete Gloeophyllum trabeum. Appl Environ Microbiol 71, 2412–2417.[CrossRef]
    [Google Scholar]
  14. Copa-Patino, J. L. & Broda, P. ( 1994; ). Phanerochaete chrysosporium β-d-glucosidase/β-d-xylosidase with specificity for (1→3)-β-d-glucan linkages. Carbohydrate Res 253, 265–275.[CrossRef]
    [Google Scholar]
  15. Cotoras, M. & Agosin, E. ( 1992; ). Regulatory aspects of endoglucanase production by the brown-rot fungus Gloeophyllum trabeum. Exp Mycol 16, 253–260.[CrossRef]
    [Google Scholar]
  16. Deshpande, M. V., Eriksson, K. E. & Pettersson, G. ( 1978; ). Production, purification and partial characterization of 1,4-β-glucosidase enzymes from Sporotrichum pulverulentum. Eur J Biochem 90, 191–198.[CrossRef]
    [Google Scholar]
  17. Dvořáková, J., Schmidt, D., Huňková, Z., Thiem, J. & Křen, V. ( 2001; ). Enzymatic rearrangement of chitine hydrolysates with [β]-N-acetylhexosaminidase from Aspergillus oryzae. J Mol Catal B: Enzymatic 11, 225–232.[CrossRef]
    [Google Scholar]
  18. Eriksson, K.-E. L., Blanchette, R. A. & Ander, P. ( 1990; ). Microbial and Enzymatic Degradation of Wood and Wood Components. Berlin: Springer.
  19. Gilbertson, R. L. & Ryvarden, L. ( 1986; ). North American Polypores. Oslo: Fungiflora.
  20. Goodell, B. ( 2003; ). Brown-rot fungal degradation of wood: our evolving view. Wood Deterior Preserv 845, 97–118.
    [Google Scholar]
  21. Hammel, K. E., Kapich, A. N., Jensen, K. A. & Ryan, Z. C. ( 2002; ). Reactive oxygen species as agents of wood decay by fungi. Enzyme Microb Technol 30, 445–453.[CrossRef]
    [Google Scholar]
  22. Herr, D., Baumer, F. & Dellweg, H. ( 1978a; ). Purification and properties of an extracellular endo-1,4-β-glucanase from Lenzites trabea. Arch Microbiol 117, 287–292.[CrossRef]
    [Google Scholar]
  23. Herr, D., Baumer, F. & Dellweg, H. ( 1978b; ). Purification and properties of an extracellular beta-glucosidase from Lenzites trabea. Eur J Appl Microbiol Biotechnol 5, 29–36.[CrossRef]
    [Google Scholar]
  24. Highley, T. L. ( 1973; ). Influence of carbon source on cellulase activity of white-rot and brown-rot fungi. Wood Fiber 5, 50–58.
    [Google Scholar]
  25. Hyde, S. M. & Wood, P. M. ( 1997; ). A mechanism for production of hydroxyl radicals by the brown-rot fungus Coniophora puteana: Fe(III) reduction by cellobiose dehydrogenase and Fe(II) oxidation at a distance from the hyphae. Microbiology 143, 259–266.[CrossRef]
    [Google Scholar]
  26. Ishihara, M. & Shimizu, K. ( 1984; ). Purification and properties of two extracellular endo-cellulases from the brown-rotting fungus Tyromyces palustris. Mokuzai Gakkaishi 30, 79–87.
    [Google Scholar]
  27. Jensen, K. A., Houtman, C. J., Ryan, Z. C. & Hammel, K. E. ( 2001; ). Pathways for extracellular Fenton chemistry in the brown rot basidiomycete Gloeophyllum trabeum. Appl Environ Microbiol 67, 2705–2711.[CrossRef]
    [Google Scholar]
  28. Keilich, P., Bailey, P. J., Afting, E. J. & Liese, W. ( 1969; ). Cellulase from the wood-degrading fungus Polyporus schweinitzii Fr. Biochim Biophys Acta 185, 392–401.[CrossRef]
    [Google Scholar]
  29. Kleman-Leyer, K. & Kirk, T. K. ( 1994; ). Three native cellulose-depolymerizing endoglucanases from solid-substrate cultures of the brown-rot fungus Meruliporia (Serpula) incrassata. Appl Environ Microbiol 60, 2839–2845.
    [Google Scholar]
  30. Lymar, E. S., Li, B. & Renganathan, V. ( 1995; ). Purification and characterization of a cellulose-binding β-glucosidase from cellulose-degrading cultures of Phanerochaete chrysosporium. Appl Environ Microbiol 61, 2976–2980.
    [Google Scholar]
  31. Mansfield, S. D., Saddler, J. N. & Gübitz, G. M. ( 1998; ). Characterization of endoglucanases from the brown rot fungi Gloeophyllum sepiarium and Gloeophyllum trabeum. Enzyme Microb Technol 23, 133–140.[CrossRef]
    [Google Scholar]
  32. Morais, H., Ramos, C., Matos, N., Forgacs, E., Cserhati, T., Almeida, V., Oliveira, J., Darwish, Y. & Illes, Z. ( 2002; ). Liquid chromatographic and electrophoretic characterisation of extracellular β-glucosidase of Pleurotus ostreatus grown in organic waste. J Chromatogr B 770, 111–119.[CrossRef]
    [Google Scholar]
  33. Ngo, T. T. & Lenhoff, H. M. ( 1980; ). A sensitive and versatile chromogenic assay for peroxidase and peroxidase-coupled reactions. Anal Biochem 105, 389–397.[CrossRef]
    [Google Scholar]
  34. Sadana, J. C. & Patil, R. V. ( 1988; ). 1,4-β-d-Glucan cellobiohydrolase from Sclerotium rolfsii. Methods Enzymol 160, 307–314.
    [Google Scholar]
  35. Sethuraman, A., Akin, D. E. & Eriksson, K. E. ( 1998; ). Plant-cell-wall-degrading enzymes produced by the white-rot fungus Ceriporiopsis subvermispora. Biotechnol Appl Biochem 27, 37–47.[CrossRef]
    [Google Scholar]
  36. Sison, B. C., Schubert, W. J. & Nord, F. F. ( 1958; ). On the mechanism of enzyme action. LXV. A cellulolytic enzyme from the mold Poria vaillantii. Arch Biochem Biophys 75, 260–272.[CrossRef]
    [Google Scholar]
  37. Smith, M. H. & Gold, M. H. ( 1979; ). Phanerochaete chrysosporium β-glucosidases: induction, cellular localization, and physical characterization. Appl Environ Microbiol 37, 938–942.
    [Google Scholar]
  38. Takao, S. ( 1965; ). Organic acid production by basidiomycetes I. Screening of acid-producing strains. Appl Microbiol 13, 732–737.
    [Google Scholar]
  39. Temp, U. & Eggert, C. ( 1999; ). Novel interaction between laccase and cellobiose dehydrogenase during pigment synthesis in the white rot fungus Pycnoporus cinnabarinus. Appl Environ Microbiol 65, 389–395.
    [Google Scholar]
  40. Wei, D. L., Kirimura, K., Usami, S. & Lin, T. H. ( 1996; ). Purification and characterization of an extracellular β-glucosidase from the wood-grown fungus Xylaria regalis. Curr Microbiol 33, 297–301.[CrossRef]
    [Google Scholar]
  41. Wood, T. M. ( 1988; ). Preparation of crystalline, amorphous, and dyed cellulase substrates. Methods Enzymol 160, 19–25.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.29149-0
Loading
/content/journal/micro/10.1099/mic.0.29149-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error