1887

Abstract

The authors have shown previously that the gene, which is part of the operon, plays an important role in protease activation in . The gingipain RgpB proenzyme is secreted in the -defective mutant FLL92. An important question that is raised is whether the gene product could directly interact with the proteases for their activation or regulate a pathway responsible for protease activation. To further study the mechanism(s) of VimA-dependent protease activation, the gene product was further characterized. A 39 kDa protein consistent with the size of the predicted VimA protein was purified. In protein–protein interaction studies, the VimA protein was shown to interact with gingipains RgpA, RgpB and Kgp. Immune sera from mice immunized with immunoreacted with the purified VimA protein. Taken together, these data suggest an interaction of VimA with the gingipains and further confirm the role of this protein in their regulation or maturation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.29146-0
2006-11-01
2020-03-31
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/11/3383.html?itemId=/content/journal/micro/10.1099/mic.0.29146-0&mimeType=html&fmt=ahah

References

  1. Abaibou H, Ma Q, Olango G. J, Potempa J, Travis J, Fletcher H. M. 2000; Unaltered expression of the major protease genes in a non-virulent recA -defective mutant of Porphyromonas gingivalis W83. Oral Microbiol Immunol15:40–47[CrossRef]
    [Google Scholar]
  2. Abaibou H, Chen Z, Olango G. J, Liu Y, Edwards J, Fletcher H. M. 2001; vimA gene downstream of recA is involved in virulence modulation in Porphyromonas gingivalis W83. Infect Immun69:325–335[CrossRef]
    [Google Scholar]
  3. Agrawal V, Kishan K. V. 2002; Promiscuous binding nature of SH3 domains to their target proteins. Protein Pept Lett9:185–193[CrossRef]
    [Google Scholar]
  4. Amano A. 2003; Molecular interaction of Porphyromonas gingivalis with host cells: implication for the microbial pathogenesis of periodontal disease. J Periodontol74:90–96[CrossRef]
    [Google Scholar]
  5. Amano A, Kuboniwa M, Nakagawa I, Akiyama S, Morisaki I, Hamada S. 2000; Prevalence of specific genotypes of Porphyromonas gingivalis fimA and periodontal health status. J Dent Res79:1664–1668[CrossRef]
    [Google Scholar]
  6. az-Torres M. L, Russell R. R. 2001; HtrA protease and processing of extracellular proteins of Streptococcus mutans . FEMS Microbiol Lett204:23–28[CrossRef]
    [Google Scholar]
  7. Baker P. J, DuFour L, Dixon M, Roopenian D. C. 2000; Adhesion molecule deficiencies increase Porphyromonas gingivalis -induced alveolar bone loss in mice. Infect Immun68:3103–3107[CrossRef]
    [Google Scholar]
  8. Boatright K. M, Salvesen G. S. 2003a; Caspase activation Biochem Soc Symp;233–242
    [Google Scholar]
  9. Boatright K. M, Salvesen G. S. 2003b; Mechanisms of caspase activation. Curr Opin Cell Biol15:725–731[CrossRef]
    [Google Scholar]
  10. Boatright K. M, Renatus M, Scott F. L. 8 other authors 2003; A unified model for apical caspase activation. Mol Cell11:529–541[CrossRef]
    [Google Scholar]
  11. Bosques C. J, Tschampel S. M, Woods R. J, Imperiali B. 2004; Effects of glycosylation on peptide conformation: a synergistic experimental and computational study. J Am Chem Soc126:8421–8425[CrossRef]
    [Google Scholar]
  12. Brook I. 1989; Pathogenicity of the Bacteroides fragilis group. Ann Clin Lab Sci19:360–376
    [Google Scholar]
  13. Cortes G, Benedi V. J, Alberti S, de Astorza B. 2002; Role of the htrA gene in Klebsiella pneumoniae virulence. Infect Immun70:4772–4776[CrossRef]
    [Google Scholar]
  14. Curtis M. A, Thickett A, Slaney J. M, Rangarajan M, Aduse-Opoku J, Shepherd P, Paramonov N, Hounsell E. F. 1999; Variable carbohydrate modifications to the catalytic chains of the RgpA and RgpB proteases of Porphyromonas gingivalis W50. Infect Immun67:3816–3823
    [Google Scholar]
  15. Deshpande R. G, Khan M. B, Genco C. A. 1998; Invasion of aortic and heart endothelial cells by Porphyromonas gingivalis . Infect Immun66:5337–5343
    [Google Scholar]
  16. Eichinger A, Beisel H. G, Jacob U, Huber R, Medrano F. J, Banbula A, Potempa J, Travis J, Bode W. 1999; Crystal structure of gingipain R: an Arg-specific bacterial cysteine proteinase with a caspase-like fold. EMBO J18:5453–5462[CrossRef]
    [Google Scholar]
  17. Foucaud-Scheunemann C, Poquet I. 2003; HtrA is a key factor in the response to specific stress conditions in Lactococcus lactis . FEMS Microbiol Lett224:53–59[CrossRef]
    [Google Scholar]
  18. Gallagher A, Aduse-Opoku J, Rangarajan M, Slaney J. M, Curtis M. A. 2003; Glycosylation of the Arg-gingipains of Porphyromonas gingivalis and comparison with glycoconjugate structure and synthesis in other bacteria. Curr Protein Pept Sci4:427–441[CrossRef]
    [Google Scholar]
  19. Grau A. J, Becher H, Ziegler C. M.7 other authors 2004; Periodontal disease as a risk factor for ischemic stroke. Stroke35:496–501[CrossRef]
    [Google Scholar]
  20. Hedberg M, Nord C. E. 1996; Beta-lactam resistance in anaerobic bacteria: a review. J Chemother8:3–16[CrossRef]
    [Google Scholar]
  21. Ishikura H, Arakawa S, Nakajima T, Tsuchida N, Ishikawa I. 2003; Cloning of the Tannerella forsythensis (Bacteroides forsythus) siaHI gene and purification of the sialidase enzyme. J Med Microbiol52:1101–1107[CrossRef]
    [Google Scholar]
  22. Johnson N. A, Liu Y, Fletcher H. M. 2004; Alkyl hydroperoxide peroxidase subunit C (ahpC) protects against organic peroxides but does not affect the virulence of Porphyromonas gingivalis W83. Oral Microbiol Immunol19:233–239[CrossRef]
    [Google Scholar]
  23. Lipinska B, Zylicz M, Georgopoulos C. 1990; The HtrA (DegP) protein, essential for Escherichia coli survival at high temperatures, is an endopeptidase. J Bacteriol172:1791–1797
    [Google Scholar]
  24. Lyon W. R, Caparon M. G. 2004; Role for serine protease HtrA (DegP) of Streptococcus pyogenes in the biogenesis of virulence factors SpeB and the hemolysin streptolysin S. Infect Immun72:1618–1625[CrossRef]
    [Google Scholar]
  25. Nakayama K. 2003; Molecular genetics of Porphyromonas gingivalis : gingipains and other virulence factors. Curr Protein Pept Sci4:389–395[CrossRef]
    [Google Scholar]
  26. Olango G. J, Roy F, Sheets S. M, Young M. K, Fletcher H. M. 2003; Gingipain RgpB is excreted as a proenzyme in the vimA -defective mutant Porphyromonas gingivalis FLL92. Infect Immun71:3740–3747[CrossRef]
    [Google Scholar]
  27. Pallen M. J, Wren B. W. 1997; The HtrA family of serine proteases. Mol Microbiol26:209–221[CrossRef]
    [Google Scholar]
  28. Pawson T, Raina M, Nash P. 2002; Interaction domains: from simple binding events to complex cellular behavior. FEBS Lett513:2–10[CrossRef]
    [Google Scholar]
  29. Ponting C. P. 1997; Evidence for PDZ domains in bacteria, yeast, and plants. Protein Sci6:464–468
    [Google Scholar]
  30. Poquet I, Saint V, Seznec E, Simoes N, Bolotin A, Gruss A. 2000; HtrA is the unique surface housekeeping protease in Lactococcus lactis and is required for natural protein processing. Mol Microbiol35:1042–1051[CrossRef]
    [Google Scholar]
  31. Potempa J, Mikolajczyk-Pawlinska J, Brassell D, Nelson D, Thogersen I. B, Enghild J. J, Travis J. 1998; Comparative properties of two cysteine proteinases (gingipains R), the products of two related but individual genes of Porphyromonas gingivalis . J Biol Chem273:21648–21657[CrossRef]
    [Google Scholar]
  32. Sechi L. A, Karadenizli A, Deriu A, Zanetti S, Kolayli F, Balikci E, Vahaboglu H. 2004; PER-1 type beta-lactamase production in Acinetobacter baumannii is related to cell adhesion. Med Sci Monit10:BR180–BR184
    [Google Scholar]
  33. Sheng M, Sala C. 2001; PDZ domains and the organization of supramolecular complexes. Annu Rev Neurosci24:1–29[CrossRef]
    [Google Scholar]
  34. Smayevsky J, Canigia L. F, Lanza A, Bianchini H. 2001; Vaginal microflora associated with bacterial vaginosis in nonpregnant women: reliability of sialidase detection. Infect Dis Obstet Gynecol9:17–22[CrossRef]
    [Google Scholar]
  35. Vanterpool E, Roy F, Fletcher H. M. 2004; The vimE gene downstream of vimA is independently expressed and is involved in modulating proteolytic activity in Porphyromonas gingivalis W83. Infect Immun72:5555–5564[CrossRef]
    [Google Scholar]
  36. Vanterpool E, Roy F, Fletcher H. M. 2005a; Inactivation of vimF , a putative glycosyltransferase gene downstream of vimE , alters glycosylation and activation of the gingipains in Porphyromonas gingivalis W83. Infect Immun73:3971–3982[CrossRef]
    [Google Scholar]
  37. Vanterpool E, Roy F, Sandberg L, Fletcher H. M. 2005b; Altered gingipain maturation in vimA - and vimE -defective isogenic mutants of Porphyromonas gingivalis . Infect Immun73:1357–1366[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.29146-0
Loading
/content/journal/micro/10.1099/mic.0.29146-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error