1887

Abstract

The genes for polyethylene glycol (PEG) catabolism (, , , and ) in strain 103 were shown to form a PEG-inducible operon. The gene, encoding an AraC-type regulator in the downstream area of the operon, is transcribed in the reverse direction. The transcription start sites of the operon were mapped, and three putative -type promoter sites were identified in the , and promoters. A promoter activity assay showed that the promoter was induced by PEG and oligomeric ethylene glycols, whereas the and promoters were induced by PEG. Deletion analysis of the promoter indicated that the region containing the activator-binding motif of an AraC/XylS-type regulator was required for transcription of the operon. Gel retardation assays demonstrated the specific binding of PegR to the promoter. Transcriptional fusion studies of with and promoters suggested that PegR regulates the expression of the operon positively through its binding to the promoter, but PegR does not bind to the promoter. Two specific binding proteins for the promoter were purified and identified as a GalR-type regulator and an H2A histone fragment (histone-like protein, HU). The binding motif of a GalR/LacI-type regulator was found in the and promoters. These results suggested the dual regulation of the operon through the promoter by an AraC-type regulator, PegR (PEG-independent), and through the and promoters by a GalR/LacI-type regulator together with HU (PEG-dependent).

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.29127-0
2006-10-01
2020-08-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/10/3025.html?itemId=/content/journal/micro/10.1099/mic.0.29127-0&mimeType=html&fmt=ahah

References

  1. Aki T, Adhya S. 1997; Repressor induced site-specific binding of HU for transcriptional regulation. EMBO16:3666–3674[CrossRef]
    [Google Scholar]
  2. Aki T, Choy H. E, Adhya S. 1996; Histone-like protein HU as a specific transcriptional regulator: co-factor role in repression of gal transcription by GAL repressor. Genes Cells1:179–188[CrossRef]
    [Google Scholar]
  3. Atlas R. M. 1995; Handbook of Microbiological Media for Environmental Microbiology Boca Raton, FL: CRC Press;
    [Google Scholar]
  4. Bailey F. E. Jr, Koleske J. V. 1976; Poly(Ethylene Oxide) New York: Academic Press;
    [Google Scholar]
  5. Busby S, Ebright R. H. 1994; Promoter structure, promoter recognition and transcription activation in prokaryotes. Cell79:743–746
    [Google Scholar]
  6. Chatterjee S, Zhou Y.-N, Roy S, Adhya S. 1997; Interaction of Gal repressor with inducer and operator: induction of gal transcription from repressor-bound DNA. Proc Natl Acad Sci U S A94:2957–2962[CrossRef]
    [Google Scholar]
  7. Collado-Vides J, Magasanik B, Gralla J. D. 1991; Control site localization and transcriptional regulation in Escherichia coli . Microbiol Rev55:371–394
    [Google Scholar]
  8. Cox D. P. 1978; The biodegradation of polyethylene glycols. Adv Appl Microbiol23:173–194
    [Google Scholar]
  9. deHaseth P. L, Zupancic M. L, Record M. T. Jr. 1998; RNA polymerase-promoter interactions: the comings and goings of RNA polymerase. J Bacteriol180:3019–3025
    [Google Scholar]
  10. Diver J. M, Bryan L. E, Sokol P. A. 1990; Transformation of Pseudomonas aeruginosa by electroporation. Anal Biochem189:75–79[CrossRef]
    [Google Scholar]
  11. Drlica K, Rouviere-Yaniv J. 1987; Histonelike proteins of bacteria. Microbiol Rev51:301–319
    [Google Scholar]
  12. Enokibara S, Kawai F. 1997; Purification and characterization of an ether bond-cleaving enzyme involved in the metabolism of polyethylene glycol. J Ferment Bioeng83:549–554[CrossRef]
    [Google Scholar]
  13. Farinha M. A, Kropinski A. M. 1990; Construction of broad-host-range plasmid vectors for easy visible selection and analysis of promoters. J Bacteriol172:3496–3499
    [Google Scholar]
  14. Frings J, Schramm E, Schink B. 1992; Enzymes involved in anaerobic polyethylene glycol degradation by Pelobacter venetianus and Bacteroides strain PG1. Appl Environ Microbiol58:2164–2167
    [Google Scholar]
  15. Frohman M. A, Dush M, Martin G. R. 1988; Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci U S A85:8998–9002[CrossRef]
    [Google Scholar]
  16. Gallegos M. T, Michan C, Ramos J. L. 1993; The XylS/AraC family of regulators. Nucleic Acids Res21:807–810[CrossRef]
    [Google Scholar]
  17. Gallegos M. T, Marques S, Ramos J. L. 1996; Expression of the TOL plasmid xylS gene in Pseudomonas putida occurs from a σ [sup]70[/sup]-dependent promoter or from σ [sup]70[/sup]- and σ [sup]54[/sup]-dependent tandem promoters according to the aromatic compound used for growth. J Bacteriol178:2356–2361
    [Google Scholar]
  18. Gallegos M. T, Schleif R, Bairoch A, Hofmann K, Ramos J. L. 1997; AraC/XylS family of transcriptional regulators. Microbiol Mol Biol Rev61:393–410
    [Google Scholar]
  19. Harrison S. C. 1991; A structural taxonomy of DNA-binding domains. Nature353:715–719[CrossRef]
    [Google Scholar]
  20. Hemat F, Mcentee K. 1994; A rapid and efficient PCR-based method for synthesizing high molecular-weight multimers of oligonucleotides. Biochem Biophys Res Commun205:475–481[CrossRef]
    [Google Scholar]
  21. Hendrickson W, Schleif R. 1985; A dimer of AraC protein contacts three adjacent major groove regions of the araI DNA site. Proc Natl Acad Sci U S A82:3129–3133[CrossRef]
    [Google Scholar]
  22. Irani M. H, Orosz J, Adhya S. 1983; A control element within a structural gene: the gal operon of Escherichia coli . Cell32:783–788[CrossRef]
    [Google Scholar]
  23. Kado C. I, Liu S. T. 1981; Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol145:1365–1373
    [Google Scholar]
  24. Kawai F. 1999; Sphingomonads involved in the biodegradation of xenobiotic polymers. J Ind Microbiol Biotechnol23:400–407[CrossRef]
    [Google Scholar]
  25. Kawai F. 2002; Microbial degradation of polyethers. Appl Microbiol Biotechnol58:30–38[CrossRef]
    [Google Scholar]
  26. Kawai F, Enokibara S. 1996; Role of novel dye-linked dehydrogenases in the metabolism of polyethylene glycol by pure cultures of Sphingomonas sp. N6. FEMS Microbiol Lett141:45–50[CrossRef]
    [Google Scholar]
  27. Kawai F, Yamanaka H. 1986; Biodegradation of polyethylene glycol by symbiotic mixed culture (obligate mutualism). Arch Microbiol146:125–129[CrossRef]
    [Google Scholar]
  28. Kawai F, Kimura T, Tani Y, Yamada H, Kurachi K. 1985; Purification and characterization of polyethylene glycol dehydrogenase involved in the bacterial metabolism of polyethylene glycol. Appl Environ Microbiol40:701–705
    [Google Scholar]
  29. Kimbara K, Hashimoto T, Fukuda M, Koana T, Takagi M, Oishi M, Yano K. 1989; Cloning and sequencing of two tandem genes involved in degradation of 2,3-dihydroxybiphenyl to benzoic acid in the polychlorinated biphenyl-degrading soil bacterium Pseudomonas sp. strain KKS102. J Bacteriol171:2740–2747
    [Google Scholar]
  30. Koh Y. S, Choih J, Lee J. H, Roe J. H. 1996; Regulation of the ribA gene encoding GTP cyclohydrolase II by the soxRS locus in Escherichia coli . Mol Gen Genet251:591–598
    [Google Scholar]
  31. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227:680–685[CrossRef]
    [Google Scholar]
  32. Majumdar A, Adhya S. 1984; Demonstration of two operator elements in gal : in vitro repressor binding studies. Proc Natl Acad Sci U S A81:6100–6104[CrossRef]
    [Google Scholar]
  33. Majumdar A, Adhya S. 1987; Probing the structure of Gal operator–repressor complexes. J Biol Chem262:13258–13262
    [Google Scholar]
  34. Marmur J. A. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol3:208–218[CrossRef]
    [Google Scholar]
  35. Miller J. H. 1972; Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Habor Laboratory;
    [Google Scholar]
  36. Ohta T, Tani A, Kimbara K, Kawai F. 2005; A novel nicotinoprotein aldehyde dehydrogenase involved in polyethyleneglycol degradation. Appl Microbiol Biotechnol68:639–646[CrossRef]
    [Google Scholar]
  37. Pal R, Bhasin V. K, Lal R. 2006; Proposal to reclassify [ Sphingomonas ] xenophaga Stolz et al. , 2000 and [ Sphingomonas ] taejonensis Lee et al. , 2001 as Sphingobium xenophagum comb. nov. and Sphingopyxis taejonensis comb. nov., respectively. Int J Syst Evol Microbiol56:667–670[CrossRef]
    [Google Scholar]
  38. Ramos J. L, Rojo F, Zhou L, Timmis K. N. 1990; A family of positive regulators related to the Pseudomonas putida TOL plasmid XylS and the Escherichia coli AraC activators. Nucleic Acids Res18:2149–2152[CrossRef]
    [Google Scholar]
  39. Reeder T, Schleif R. 1993; AraC protein can activate transcription from only one position and when pointed in only one direction. J Mol Biol231:205–218[CrossRef]
    [Google Scholar]
  40. Rouviere-Yaniv J, Gros F. 1975; Characterization of a novel, low molecular weight DNA-binding protein from Escherichia coli . Proc Natl Acad Sci U S A72:3428–3432[CrossRef]
    [Google Scholar]
  41. Sadler J. R, Sasmor H, Betz J. L. 1983; A perfectly symmetric lac operator binds the lac repressor very tightly. Proc Natl Acad Sci U S A80:6785–6789[CrossRef]
    [Google Scholar]
  42. Sambrook J, Fritsch E. F, Maniatis T. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  43. Schramn E, Schink B. 1991; Ether-cleaving enzyme and diol dehydratase involved in anaerobic polyethylene glycol degradation by a new Acetobacterium sp. Biodegradation2:71–79[CrossRef]
    [Google Scholar]
  44. Shevchenko A, Wilm M, Vorm O, Mann M. 1996; Mass spectrometric sequencing of proteins from silver stained polyacrylamide gels. Anal Chem68:850–858[CrossRef]
    [Google Scholar]
  45. Shine J, Dalgarno L. 1975; Determination of cistron specificity in bacterial ribosomes. Nature254:34–38[CrossRef]
    [Google Scholar]
  46. Sugimoto M, Tanabe M, Hataya M, Enokibara S, Duine J. A, Kawai F. 2001; The first step in polyethylene glycol degradation by sphingomonads proceeds via a flavoprotein alcohol dehydrogenase containing flavin adenine dinucleotide. J Bacteriol183:6694–6698[CrossRef]
    [Google Scholar]
  47. Takeuchi M, Hamana K, Hiraishi A. 2001; Proposal of the genus Sphingomonas sensu stricto and three new genera,Sphingobium , Novosphingobium and Sphingopyxis , on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol51:1405–1417
    [Google Scholar]
  48. van der Meer J. R, Vos W. M. D, Harayama S, Zehnder A. J. B. 1992; Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiol Rev56:677–694
    [Google Scholar]
  49. Weickert M. J, Adhya S. 1992; A family of bacterial regulators homologous to Gal and Lac repressors. J Biol Chem267:15869–15874
    [Google Scholar]
  50. Yamanaka H, Kawai F. 1989; Purification and characterization of constitutive polyethylene glycol (PEG) dehydrogenase of a PEG 4,000-utilizing Flavobacterium sp. No. 203. J Ferment Bioeng67:324–330[CrossRef]
    [Google Scholar]
  51. Yamashita M, Tani A, Kawai F. 2004; A new ether bond-splitting enzyme found in Gram-positive polyethylene glycol 6000-utilizing bacterium, Pseudonocardia sp. strain K1. Appl Microbiol Biotechnol66:174–179[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.29127-0
Loading
/content/journal/micro/10.1099/mic.0.29127-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error