1887

Abstract

The insect-transmissible strain GII-3 of contains plasmids pSci1–6, five of which (pSci1–5) encode adhesin-like proteins and one (pSci6) encodes protein P32, which has been associated with insect transmissibility. In contrast, strains ASP-1 and 44, which cannot be transmitted via injection into the leafhopper vector , lack these proteins and also do not carry plasmids pSci1–6. To further study the apparent relationship between the presence of plasmids and insect transmissibility, plasmids from GII-3 were introduced into the insect-non-transmissible strain 44 by electrotransformation using the gene as the selection marker. Tetracycline-resistant transformants were shown to carry one, two or three distinct plasmids. Plasmids pSci1–6 were all detected in the transformants, pSci1 being the most frequently found, alone or together with other plasmids. Selected 44 transformants having distinct plasmid contents were submitted, separately or in combination, to experimental transmission to periwinkle () plants via injection into the leafhopper vector. The occurrence of symptomatic plants indicated that, in contrast to 44, spiroplasmal transformants were transmitted to the host plant, in which they multiplied. Spiroplasma cultures isolated from these infected plants all contained pSci6, leading to the conclusion that, under the experimental conditions used, transformation by pSci6 conferred insect transmissibility to strain 44. This is believed to be the first report of a phenotypic change associated with transformation of by natural plasmids.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.29085-0
2006-09-01
2020-08-11
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/9/2703.html?itemId=/content/journal/micro/10.1099/mic.0.29085-0&mimeType=html&fmt=ahah

References

  1. Ammar E.-D, Fulton D, Bai X, Meulia T, Hogenhout S. A. 2004; An attachment tip and pili-like structures in insect- and plant-pathogenic spiroplasmas of the class Mollicutes. Arch Microbiol181:97–105[CrossRef]
    [Google Scholar]
  2. André A., Maccheroni W, Doignon F, Garnier M, Renaudin J. 2003; Glucose and trehalose PTS permeases of Spiroplasma citri probably share a single IIA domain, enabling the spiroplasma to adapt quickly to carbohydrate changes in its environment. Microbiology149:2687–2696[CrossRef]
    [Google Scholar]
  3. Archer D. B, Best J, Barber C. 1981; Isolation and restriction mapping of a spiroplasma plasmid. J Gen Microbiol126:511–514
    [Google Scholar]
  4. Balish M. F, Krause D. C. 2005; Mycoplasma attachment organelle and cell division. In Mycoplasmas: Pathogenesis, Molecular Biology, and Emerging Strategies for Control pp 189–237 Blanchard A., Browning G.. Norwich, UK: Horizon Scientific Press;
    [Google Scholar]
  5. Berg M, Melcher U, Fletcher J. 2001; Characterization of Spiroplasma citri adhesion related protein SARP1, which contains a domain of a novel family designated sarpin. Gene275:57–64[CrossRef]
    [Google Scholar]
  6. Berho N, Duret S, Renaudin J. 2006; Absence of plasmids encoding adhesion-related proteins in non-insect-transmissible strains of Spiroplasma citri . Microbiology152:873–886[CrossRef]
    [Google Scholar]
  7. Boutareaud A, Danet J. L, Garnier M, Saillard C. 2004; Disruption of a gene predicted to encode a solute binding protein of an ABC transporter reduces transmission of Spiroplasma citri by the leafhopper Circulifer haematoceps . Appl Environ Microbiol70:3960–3967[CrossRef]
    [Google Scholar]
  8. Bové J. M., Carle P, Garnier M, Laigret F, Renaudin J, Saillard C. 1989; Molecular and cellular biology of spiroplasmas. In The Mycoplasmas vol 5 pp 243–364 Edited by Whitcomb R. F., Tully J. G.. New York: Academic Press;
    [Google Scholar]
  9. Bové J. M., Renaudin J, Saillard C, Foissac X, Garnier M. 2003; Spiroplasma citri , a plant pathogenic mollicute: relationships with its two hosts, the plant and the leafhopper vector. Annu Rev Phytopathol41:483–500[CrossRef]
    [Google Scholar]
  10. Christensen N. M, Axelsen K. B, Nicolaisen M, Schulz A. 2005; Phytoplasmas and their interactions with hosts. Trends Plant Sci10:526–535[CrossRef]
    [Google Scholar]
  11. Davis R. E, Dally E. L, Jomantiene R, Zhao Y, Roe B, Lin S, Shao J. 2005; Cryptic plasmid pSKU146 from the wall-less plant pathogen Spiroplasma kunkelii encodes an adhesin and components of a type IV translocation-related conjugation system. Plasmid53:179–190[CrossRef]
    [Google Scholar]
  12. Duret S, Berho N, Danet J. L, Garnier M, Renaudin J. 2003; Spiralin is not essential for helicity, motility, or pathogenicity but is required for efficient transmission of Spiroplasma citri by its leafhopper vector Circulifer haematoceps . Appl Environ Microbiol69:6225–6234[CrossRef]
    [Google Scholar]
  13. Firrao G, Gibb K. S, Streten C. 2005; Short taxonomic guide to the genus ‘ Candidatus Phytoplasma’. J Plant Pathol87:249–263
    [Google Scholar]
  14. Fletcher J, Schultz G. A, Davis R. E, Eastman C. E, Goodman R. M. 1981; Brittle root disease of horseradish: evidence for an etiological role of Spiroplasma citri . Phytopathology71:1073–1080[CrossRef]
    [Google Scholar]
  15. Fletcher J, Wayadande A, Melcher U, Ye F. C. 1998; The phytopathogenic mollicute-insect vector interface: a closer look. Phytopathology88:1351–1358[CrossRef]
    [Google Scholar]
  16. Foissac X, Danet J. L, Saillard C, Whitcomb R. F, Bové J. M. 1996; Experimental infections of plant by spiroplasmas. In Molecular and Diagnostic Procedures in Mycoplasmology vol. 2 pp 385–389 Edited by Razin S., Tully J. G.. New York: Academic Press;
    [Google Scholar]
  17. Foissac X, Danet J. L, Saillard C, Gaurivaud P, Laigret F, Pare C, Bové J. M. 1997; Mutagenesis by insertion of Tn 4001 into the genome of Spiroplasma citri : characterization of mutants affected in plant pathogenicity and transmission to the plant by the leafhopper vector Circulifer haematoceps . Mol Plant Microbe Interact10:454–461[CrossRef]
    [Google Scholar]
  18. Foissac X, Carle P, Killiny N, Duret S, Bové J. M., Saillard C. 2004; Spiroplasma citri genome contains large plasmids carrying genes putatively involved in DNA transfer and in interaction with the insect vector. In 15th Congress of the International Organization for Mycoplasmology Athens, GA, USA:
    [Google Scholar]
  19. Fos A, Bové J. M., Lallemand J, Saillard C, Vignault J. C, Ali Y, Brun P, Vogel R. 1986; The leafhopper Neoaliturus haematoceps (Mulsant & Rey) is a vector of Spiroplasma citri in the Mediterranean. Ann Inst Pasteur Microbiol137A:97–107 (in French)
    [Google Scholar]
  20. Gasparich G. E, Hackett K. J, Clark E. A, Renaudin J, Whitcomb R. F. 1993; Occurrence of extrachromosomal deoxyribonucleic acids in spiroplasmas associated with plants, insects, and ticks. Plasmid29:81–93[CrossRef]
    [Google Scholar]
  21. Hosseini Pour A. 2000; Determination of Some Molecular and Cellular Characteristics of Spiroplasma citri, the Causal Agent of Citrus Stubborn Disease in Kerman. Fars and Mazadaran Provinces Tehran: Tarbiat Modares University;
    [Google Scholar]
  22. Joshi B. D, Berg M, Rogers J, Fletcher J, Melcher U. 2005; Sequence comparisons of plasmids pBJS-O of Spiroplasma citri and pSKU146 of S. kunkelii : implications for plasmid evolution. BMC Genomics6:175–185[CrossRef]
    [Google Scholar]
  23. Killiny N, Foissac X, Saillard C. 2004; Comparative proteome analysis of Spiroplasma citri strains: identification of a 32 kDa protein present only in transmissible strains. In 15th Congress of the International Organization for Mycoplasmology Athens, GA, USA:
    [Google Scholar]
  24. Killiny N, Castroviejo M, Saillard C. 2005; Spiroplasma citri spiralin acts in vitro as a lectin binding to glycoproteins from its insect vector Circulifer haematoceps . Phytopathology95:541–548[CrossRef]
    [Google Scholar]
  25. Killiny N, Batailler B, Foissac X, Saillard C. 2006; Identification of a Spiroplasma citri hydrophilic protein associated with insect transmissibility. Microbiology152:1221–1230[CrossRef]
    [Google Scholar]
  26. Kwon M. O, Wayadande A. C, Fletcher J. 1999; Spiroplasma citri movement into the intestines and salivary glands of its leafhopper vector, Circulifer tenellus . Phytopathology89:1144–1151[CrossRef]
    [Google Scholar]
  27. Lartigue C, Duret S, Garnier M, Renaudin J. 2002; New plasmid vectors for specific gene targeting in Spiroplasma citri . Plasmid48:149–159[CrossRef]
    [Google Scholar]
  28. Lee I. M, Davis R. E, Gundersen-Rindal D. E. 2000; Phytoplasma: phytopathogenic mollicutes. Annu Rev Microbiol54:221–255[CrossRef]
    [Google Scholar]
  29. Liu H. Y, Gumpf D. J, Oldfield G. N, Calavan E. C. 1983a; Transmission of Spiroplasma citri by Circulifer tenellus . Phytopathology73:582–585[CrossRef]
    [Google Scholar]
  30. Liu H. Y, Gumpf D. J, Oldfield G. N, Calavan E. C. 1983b; The relationship of Spiroplasma citri and Circulifer tenellus . Phytopathology73:585–590[CrossRef]
    [Google Scholar]
  31. Mouchès C., Barroso G, Bové J. M. 1983; Characterization and molecular-cloning in Escherichia coli of a plasmid from the mollicute Spiroplasma citri . J Bacteriol156:952–955
    [Google Scholar]
  32. Nishigawa H, Oshima K, Kakizawa S, Jung H. Y, Kuboyama T, Miyata S, Ugaki M, Namba S. 2002; A plasmid from a non-insect-transmissible line of a phytoplasma lacks two open reading frames that exist in the plasmid from the wild-type line. Gene298:195–201[CrossRef]
    [Google Scholar]
  33. Özbek E., Miller S. A, Meulia T, Hogenhout S. A. 2003; Infection and replication sites of Spiroplasma kunkelii (Class: Mollicutes) in midgut and Malpighian tubules of leafhopper Dalbulus maidis . J Invertebr Pathol82:167–175[CrossRef]
    [Google Scholar]
  34. Ranhand J. M, Mitchell W. O, Popkin T. J, Cole R. M. 1980; Covalently closed circular deoxyribonucleic acids in spiroplasmas. J Bacteriol143:1194–1199
    [Google Scholar]
  35. Renaudin J, Lartigue C. 2005; oriC plasmids as gene vectors for mollicutes. In Mycoplasmas: Pathogenesis, Molecular Biology, and Emerging Strategies for Control pp 3–30 Edited by Blanchard A., Browning G.. Norwich, UK: Horizon Scientific Press;
    [Google Scholar]
  36. Saglio P, Laflèche D., Bonisol C, Bové J. M. 1971; Culture in vitro des mycoplasmes associés au stubborn des agrumes et leur observation au microscope électronique. C R Acad Sci Paris272:1387–1390
    [Google Scholar]
  37. Saglio P, Lhospital M, Laflèche D., Dupont G, Bové J. M., Tully J. G, Freundt E. A. 1973; Spiroplasma citri gen. and sp. nov. a mycoplasma-like organism associated with stubborn disease of citrus. Int J Syst Bacteriol23:191–204[CrossRef]
    [Google Scholar]
  38. Salvado J. C, Barroso G, Labarere J. 1989; Involvement of a Spiroplasma citri plasmid in the erythromycin-resistance transfer. Plasmid22:151–159[CrossRef]
    [Google Scholar]
  39. Seemüller E., Garnier M, Schneider B. 2002; Mycoplasmas of plants and insects. In Molecular and Pathogenicity of Mycoplasmas pp 91–116 Edited by Razin S., Herrmann R.. New York: Kluwer Academic/Plenum;
    [Google Scholar]
  40. Stamburski C, Renaudin J, Bové J. M. 1991; First step toward a virus-derived vector for gene cloning and expression in spiroplasmas, organisms which read UGA as a tryptophan codon – synthesis of chloramphenicol acetyltransferase in Spiroplasma citri . J Bacteriol173:2225–2230
    [Google Scholar]
  41. Suzuki S, Oshima K, Kakizawa S, Arashida R, Jung H, Yamaji Y, Nishigawa H, Ugaki M, Namba S. 2006; Interaction between the membrane protein of a pathogen and insect microfilament complex determines insect-vector specificity. Proc Natl Acad Sci U S A103:4252–4257[CrossRef]
    [Google Scholar]
  42. Townsend R, Markham P. G, Plaskitt A. K, Daniels M. J. 1977; Isolation and characterization of a non-helical strain of Spiroplasma citri . J Gen Microbiol100:15–21[CrossRef]
    [Google Scholar]
  43. Vignault J. C, Bové J. M., Saillard C. 17 other authors 1980; Mise en culture de spiroplasmes à partir de matériel végétal et d'insectes provenant de pays circum méditerranéens et du Proche Orient. C R Acad Sci Paris290:775–780
    [Google Scholar]
  44. Wayadande A. C, Fletcher J. 1995; Transmission of Spiroplasma citri lines and their ability to cross gut and salivary gland barriers within the leafhopper vector Circulifer tenellus . Phytopathology85:1256–1259[CrossRef]
    [Google Scholar]
  45. Weisburg W. G, Tully J. G, Rose D. L.. 7 other authors 1989; A phylogenetic analysis of the mycoplasmas: basis for their classification. J Bacteriol171:6455–6467
    [Google Scholar]
  46. Whitcomb R. F. 1983; Culture media for spiroplasma. Methods Mycoplasmol1:147–158
    [Google Scholar]
  47. Yu J, Wayadande A. C, Fletcher J. 2000; Spiroplasma citri surface protein P89 implicated in adhesion to cells of the vector Circulifer tenellus . Phytopathology90:716–722[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.29085-0
Loading
/content/journal/micro/10.1099/mic.0.29085-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error