1887

Abstract

Soils contaminated with mineral oil hydrocarbons are often cleaned in off-site bioremediation systems. In order to find out which bacteria are active during the degradation phase in such systems, the diversity of the active microflora in a degrading soil remediation system was investigated by small-subunit (SSU) rRNA analysis. Two sequential RNA extracts from one soil sample were generated by a procedure incorporating bead beating. Both extracts were analysed separately by generating individual SSU rDNA clone libraries from cDNA of the two extracts. The sequencing results showed moderate diversity. The two clone libraries were dominated by , especially spp. and were two other large groups in the clone libraries. , , and were detected in lower numbers. The obtained sequences were predominantly related to genera for which cultivated representatives have been described, but were often clustered together in the phylogenetic tree, and the sequences that were most similar were originally obtained from soils and not from pure cultures. Most of the dominant genera in the clone libraries, e.g. , , , and , had already been detected in (mineral oil hydrocarbon) contaminated environmental samples. The occurrence of the genera and was novel in mineral oil hydrocarbon-contaminated soil.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.29054-0
2006-11-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/11/3291.html?itemId=/content/journal/micro/10.1099/mic.0.29054-0&mimeType=html&fmt=ahah

References

  1. Alfreider, A., Vogt, C. & Babel, W. ( 2002; ). Microbial diversity in an in situ reactor system treating monochlorobenzene contaminated groundwater as revealed by 16S ribosomal DNA analysis. Syst Appl Microbiol 25, 232–240.[CrossRef]
    [Google Scholar]
  2. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  3. Amann, R. I., Ludwig, W. & Schleifer, K.-H. ( 1995; ). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59, 143–169.
    [Google Scholar]
  4. Bakermans, C. & Madsen, E. L. ( 2002; ). Diversity of 16S rDNA and naphthalene dioxygenase genes from coal-tar-waste-contaminated aquifer waters. Microb Ecol 44, 95–106.
    [Google Scholar]
  5. Bogan, B. W., Sullivan, W. R., Kayser, K. J., Derr, K. D., Aldrich, H. C. & Paterek, J. R. ( 2003; ). Alkanindiges illinoisensis gen. nov., sp. nov., an obligately hydrocarbonoclatic, aerobic squalane-degrading bacterium isolated from oilfield soils. Int J Syst Evol Microbiol 53, 1389–1395.[CrossRef]
    [Google Scholar]
  6. Borneman, J., Skroch, P. W., O'Sullivan, K. M., Palus, J. A., Rumjanek, N. G., Jansen, J. L., Nienhuis, J. & Triplett, E. W. ( 1996; ). Molecular microbial diversity of an agricultural soil in Wisconsin. Appl Environ Microbiol 62, 1935–1943.
    [Google Scholar]
  7. Bouchez, M., Blanchet, D., Besnainou, B., Leveau, J.-Y. & Vandecasteele, J.-P. ( 1997; ). Kinetic studies of biodegradation of insoluble compounds by continuous determination of oxygen consumption. J Appl Microbiol 82, 310–316.[CrossRef]
    [Google Scholar]
  8. Bürgmann, H., Pesaro, M., Widmer, F. & Zeyer, J. ( 2001; ). A strategy for optimizing quality and quantity of DNA extracted from soil. J Microbiol Methods 45, 7–20.[CrossRef]
    [Google Scholar]
  9. Campbell, T. N. & Choy, F. Y. M. ( 2001; ). Large-scale colony screening and insert orientation determination using PCR. Biotechniques 30, 32–34.
    [Google Scholar]
  10. Chao, W. L. & Hsu, S. F. ( 2004; ). Response of the soil bacterial community to the addition of toluene and toluene-degrading bacteria. Soil Biol Biochem 36, 479–487.[CrossRef]
    [Google Scholar]
  11. Chao, A. & Shen, T.-J. ( 2003; ). Program SPADE (Species Prediction And Diversity Estimation). Program and user's guide. Available at http://chao.stat.nthu.edu.tw.
  12. Chao, A., Chazdon, R. L., Colwell, R. K. & Shen, T.-J. ( 2005; ). A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol Lett 8, 148–159.
    [Google Scholar]
  13. Cole, J. R., Chai, B., Marsh, T. L. & 9 other authors ( 2003; ). The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31, 442–443.[CrossRef]
    [Google Scholar]
  14. Condé, S. & Hagedorn, M. ( 1997; ). Methode zur on-line-Überwachung der mikrobiologischen off-site-Sanierung MKW-belasteter Böden. TerraTech 6, 44–47 (in German).
    [Google Scholar]
  15. Del'Arco, J. P. & de França, F. P. ( 2001; ). Influence of oil contamination levels on hydrocarbon biodegradation in sandy sediment. Environ Pollut 110, 515–519.
    [Google Scholar]
  16. Dewhirst, F. E., Paster, B. J., Tzellas, N., Coleman, B., Downes, J., Spratt, D. A. & Wade, W. G. ( 2001; ). Characterization of novel human oral isolates and cloned 16S rDNA sequences that fall in the family Coriobacteriaceae: description of Olsenella gen. nov., reclassification of Lactobacillus uli as Olsenella uli comb. nov. and description of Olsenella profusa sp. nov. Int J Syst Evol Microbiol 51, 1797–1804.[CrossRef]
    [Google Scholar]
  17. Dien, B. S., Cotta, M. A. & Jeffries, T. W. ( 2003; ). Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63, 258–266.[CrossRef]
    [Google Scholar]
  18. Dryden, S. C. & Kaplan, S. ( 1990; ). Localization and structural analysis of the ribosomal RNA operons of Rhodobacter sphaeroides. Nucleic Acids Res 18, 7267–7277.[CrossRef]
    [Google Scholar]
  19. Eder, W., Jahnke, L. L., Schmidt, M. & Huber, R. ( 2001; ). Microbial diversity of the brine–seawater interface of the Kebrit Deep, Red Sea, studied via 16S rRNA gene sequences and cultivation methods. Appl Environ Microbiol 67, 3077–3085.[CrossRef]
    [Google Scholar]
  20. Eriksson, M., Sodersten, E., Yu, Z., Dalhammar, G. & Mohn, W. W. ( 2003; ). Degradation of polycyclic aromatic hydrocarbons at low temperature under aerobic and nitrate-reducing conditions in enrichment cultures from northern soils. Appl Environ Microbiol 69, 275–284.[CrossRef]
    [Google Scholar]
  21. Evans, F. F., Seldin, L., Sebastian, G. V., Kjelleberg, S., Holmstrom, C. & Rosado, A. S. ( 2004; ). Influence of petroleum contamination and biostimulation treatment on the diversity of Pseudomonas spp. in soil microcosms as evaluated by 16S rRNA based-PCR and DGGE. Lett Appl Microbiol 38, 93–98.[CrossRef]
    [Google Scholar]
  22. Excoffier, L., Laval, G. & Schneider, S. ( 2005; ). Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1, 47–50.
    [Google Scholar]
  23. Fahy, A., Lethbridge, G., Earle, R., Ball, A. S., Timmis, K. N. & McGenity, T. J. ( 2005; ). Effects of long-term benzene pollution on bacterial diversity and community structure in groundwater. Environ Microbiol 7, 1192–1199.[CrossRef]
    [Google Scholar]
  24. Felske, A., Wolterink, A., van Lis, R., de Vos, W. M. & Akkermans, A. D. L. ( 1999; ). Searching for predominant soil bacteria: 16S rDNA cloning versus strain cultivation. FEMS Microbiol Ecol 30, 137–145.[CrossRef]
    [Google Scholar]
  25. Friedrich, M., Grosser, R. J., Kern, E. A., Inskeep, W. P. & Ward, D. M. ( 2000; ). Effect of model sorptive phases on phenanthrene biodegradation: molecular analysis of enrichments and isolates suggests selection based on bioavailability. Appl Environ Microbiol 66, 2703–2710.[CrossRef]
    [Google Scholar]
  26. Furlong, M. A., Singleton, D. R., Coleman, D. C. & Whitman, W. B. ( 2002; ). Molecular and culture-based analyses of prokaryotic communities from an agricultural soil and the burrows and casts of the earthworm Lumbricus rubellus. Appl Environ Microbiol 68, 1265–1279.[CrossRef]
    [Google Scholar]
  27. Gallego, J. L., Loredo, J., Llamas, J. F., Vazquez, F. & Sanchez, J. ( 2001; ). Bioremediation of diesel-contaminated soils: evaluation of potential in situ techniques by study of bacterial degradation. Biodegradation 12, 325–335.[CrossRef]
    [Google Scholar]
  28. Gerdes, B., Brinkmeyer, R., Dieckmann, G. & Helmke, E. ( 2005; ). Influence of crude oil on changes of bacterial communities in Arctic sea-ice. FEMS Microbiol Ecol 53, 129–139.[CrossRef]
    [Google Scholar]
  29. Glöckner, F. O., Zaichikov, E., Belkova, N., Denissova, L., Pernthaler, J., Pernthaler, A. & Amann, R. ( 2000; ). Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of actinobacteria. Appl Environ Microbiol 66, 5053–5065.[CrossRef]
    [Google Scholar]
  30. Görres, H. E. ( 2001; ). Characterization of the bacterial diversity of a former tar works site and its indigenous degradation potential. PhD thesis, University of Newcastle.
  31. Greene, E. A., Kay, J. G., Jaber, K., Stehmeier, L. G. & Voordouw, G. ( 2000; ). Composition of soil microbial communities enriched on a mixture of aromatic hydrocarbons. Appl Environ Microbiol 66, 5282–5289.[CrossRef]
    [Google Scholar]
  32. Grosser, R. J., Friedrich, M., Ward, D. M. & Inskeep, W. P. ( 2000; ). Effect of model sorptive phases on phenanthrene biodegradation: different enrichment conditions influence bioavailability and selection of phenanthrene-degrading isolates. Appl Environ Microbiol 66, 2695–2702.[CrossRef]
    [Google Scholar]
  33. Heiss-Blanquet, S., Benoit, Y., Marechaux, C. & Monot, F. ( 2005; ). Assessing the role of alkane hydroxylase genotypes in environmental samples by competitive PCR. J Appl Microbiol 99, 1392–1403.[CrossRef]
    [Google Scholar]
  34. Holda, G. L., Prydea, S. E., Russella, V. J., Furrieb, E. & Flinta, H. J. ( 2002; ). Assessment of microbial diversity in human colonic samples by 16S rDNA sequence analysis. FEMS Microbiol Ecol 39, 33–39.[CrossRef]
    [Google Scholar]
  35. Huber, J. A., Butterfield, D. A. & Baross, J. A. ( 2003; ). Bacterial diversity in a subseafloor habitat following a deep-sea volcanic eruption. FEMS Microbiol Ecol 43, 393–409.[CrossRef]
    [Google Scholar]
  36. Hugenholtz, P., Goebel, B. M. & Pace, N. R. ( 1998; ). Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180, 4765–4774.
    [Google Scholar]
  37. Iida, T., Mukouzaka, Y., Nakamura, K., Yamaguchi, I. & Kudo, T. ( 2002; ). Isolation and characterization of dibenzofuran-degrading actinomycetes: analysis of multiple extradiol dioxygenase genes in dibenzofuran-degrading Rhodococcus species. Biosci Biotechnol Biochem 66, 1462–1472.[CrossRef]
    [Google Scholar]
  38. Juck, D., Charles, T., Whyte, L. G. & Greer, C. W. ( 2000; ). Polyphasic microbial community analysis of petroleum hydrocarbon-contaminated soils from two northern Canadian communities. FEMS Microbiol Ecol 33, 241–249.[CrossRef]
    [Google Scholar]
  39. Juteau, P., Bisaillon, J. G., Lepine, F., Ratheau, V., Beaudet, R. & Villemur, R. ( 2003; ). Improving the biotreatment of hydrocarbons-contaminated soils by addition of activated sludge taken from the wastewater treatment facilities of an oil refinery. Biodegradation 14, 31–40.[CrossRef]
    [Google Scholar]
  40. Kaplan, C. W. & Kitts, C. L. ( 2004; ). Bacterial succession in a petroleum land treatment unit. Appl Environ Microbiol 70, 1777–1786.[CrossRef]
    [Google Scholar]
  41. Kelly, D. P., Wood, A. P. & Stackebrandt, E. ( 2005; ). Genus II. Thiobacillus. In Bergey's Manual of Systematic Bacteriologythe Alpha-, Beta-, Delta-, and Epsilonproteobacteria, pp. 764–769. Edited by D. J. Brenner, N. R. Krieg & J. T. Staley. New York: Springer.
  42. Kodama, Y. & Watanabe, K. ( 2003; ). Isolation and characterization of a sulfur-oxidizing chemolithotroph growing on crude oil under anaerobic conditions. Appl Environ Microbiol 69, 107–112.[CrossRef]
    [Google Scholar]
  43. Kuske, C. R., Busche, J. D., Adorada, D. L., Dunbar, J. M. & Barns, S. M. ( 1999; ). Phylogeny, ribosomal RNA gene typing and relative abundance of new Pseudomonas species (sensu stricto) isolated from two pinyon-juniper woodland soils of the arid southwest US. Syst Appl Microbiol 22, 300–311.[CrossRef]
    [Google Scholar]
  44. Lane, D. J. ( 1991; ). 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by E. Stackebrandt & M. Goodfellow. Chichester: Wiley.
  45. La Rosa, G., De Carolis, E., Sali, M. & 7 other authors ( 2006; ). Genetic diversity of bacterial strains isolated from soils, contaminated with polycyclic aromatic hydrocarbons, by 16S rRNA gene sequencing and amplified fragment length polymorphism fingerprinting. Microbiol Res 161, 150–157.[CrossRef]
    [Google Scholar]
  46. Leys, N. M., Ryngaert, A., Bastiaens, L., Verstraete, W., Top, E. M. & Springael, D. ( 2004; ). Occurrence and phylogenetic diversity of Sphingomonas strains in soils contaminated with polycyclic aromatic hydrocarbons. Appl Environ Microbiol 70, 1944–1955.[CrossRef]
    [Google Scholar]
  47. Li, L., Cunningham, C. J., Pas, V., Philp, J. C., Barry, D. A. & Anderson, P. ( 2004; ). Field trial of a new aeration system for enhancing biodegradation in a biopile. Waste Manag 24, 127–137.[CrossRef]
    [Google Scholar]
  48. Lüdemann, H., Arth, I. & Liesack, W. ( 2000; ). Spatial changes in the bacterial community structure along a vertical oxygen gradient in flooded paddy soil cores. Appl Environ Microbiol 66, 754–762.[CrossRef]
    [Google Scholar]
  49. Ludwig, W., Strunk, O., Westram, R. & 29 other authors ( 2004; ). arb: a software environment for sequence data. Nucleic Acids Res 32, 1363–1371.[CrossRef]
    [Google Scholar]
  50. Macnaughton, S. J., Stephen, J. R., Venosa, A. D., Davis, G. A., Chang, Y.-J. & White, D. C. ( 1999; ). Microbial population changes during bioremediation of an experimental oil spill. Appl Environ Microbiol 65, 3566–3574.
    [Google Scholar]
  51. Männistö, M. K., Tiirola, M. A., Salkinoja-Salonen, M. S., Kulomaa, M. S. & Puhakka, J. A. ( 1999; ). Diversity of chlorophenol-degrading bacteria isolated from contaminated boreal groundwater. Arch Microbiol 171, 189–197.[CrossRef]
    [Google Scholar]
  52. Marchuk, D., Drumm, M., Saulino, A. & Collins, F. S. ( 1991; ). Construction of T-vectors, a rapid and general system for direct cloning of unmodified PCR products. Nucleic Acids Res 19, 1154.[CrossRef]
    [Google Scholar]
  53. Marilley, L. & Aragno, M. ( 1999; ). Phylogenetic diversity of bacterial communities differing in degree of proximity of Lolium perenne and Trifolium repens roots. Appl Soil Ecol 13, 127–136.[CrossRef]
    [Google Scholar]
  54. Martin, A. P. ( 2002; ). Phylogenetic approaches for describing and comparing the diversity of microbial communities. Appl Environ Microbiol 68, 3673–3682.[CrossRef]
    [Google Scholar]
  55. McCaig, A. E., Glover, L. A. & Prosser, J. I. ( 1999; ). Molecular analysis of bacterial community structure and diversity in unimproved and improved upland grass pastures. Appl Environ Microbiol 65, 1721–1730.
    [Google Scholar]
  56. Mills, D. K., Fitzgerald, K., Litchfield, C. D. & Gillevet, P. M. ( 2003; ). A comparison of DNA profiling techniques for monitoring nutrient impact on microbial community composition during bioremediation of petroleum-contaminated soils. J Microbiol Methods 54, 57–74.[CrossRef]
    [Google Scholar]
  57. Mishra, S., Jyot, J., Kuhad, R. C. & Lal, B. ( 2001; ). Evaluation of inoculum addition to stimulate in situ bioremediation of oily-sludge-contaminated soil. Appl Environ Microbiol 67, 1675–1681.[CrossRef]
    [Google Scholar]
  58. Moore, D. ( 1987; ). Purification and concentration of DNA from aqueous solutions. In Current Protocols in Molecular Biology, pp. 2.1.1–2.1.3. Edited by F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith & K. Stahl. New York: Wiley.
  59. Morgan, C. A., Hudson, A., Konopka, A. & Nakatsu, C. H. ( 2002; ). Analyses of microbial activity in biomass-recycle reactors using denaturing gradient gel electrophoresis of 16S rDNA and 16S rRNA PCR products. Can J Microbiol 48, 333–341.[CrossRef]
    [Google Scholar]
  60. Nogales, B., Moore, E. R. B., Abraham, W. R. & Timmis, K. N. ( 1999; ). Identification of the metabolically active members of a bacterial community in a polychlorinated biphenyl-polluted moorland soil. Environ Microbiol 1, 199–212.[CrossRef]
    [Google Scholar]
  61. O'Sullivan, L. A., Weightman, A. J. & Fry, J. C. ( 2002; ). New degenerate Cytophaga-Flexibacter-Bacteroides-specific 16S ribosomal DNA-targeted oligonucleotide probes reveal high bacterial diversity in River Taff epilithon. Appl Environ Microbiol 68, 201–210.[CrossRef]
    [Google Scholar]
  62. Palleroni, N. J., Port, A. M., Chang, H. K. & Zylstra, G. J. ( 2004; ). Hydrocarboniphaga effusa gen. nov., sp. nov., a novel member of the γ-Proteobacteria active in alkane and aromatic hydrocarbon degradation. Int J Syst Evol Microbiol 54, 1203–1207.[CrossRef]
    [Google Scholar]
  63. Paster, B. J., Boches, S. K., Galvin, J. L., Ericson, R. E., Lau, C. N., Levanos, V. A., Sahasrabudhe, A. & Dewhirst, F. E. ( 2001; ). Bacterial diversity in human subgingival plaque. J Bacteriol 183, 3770–3783.[CrossRef]
    [Google Scholar]
  64. Plaza, G., Ulfig, K. & Brigmon, R. L. ( 2003; ). Relationship between soil microbial diversity and bioremediation process at an oil refinery. Acta Microbiol Pol 52, 173–182.
    [Google Scholar]
  65. Radwan, S. S., Sorkhoh, N. A., Fardoun, F. & al-Hasan, R. H. ( 1995; ). Soil management enhancing hydrocarbon biodegradation in the polluted Kuwaiti desert. Appl Microbiol Biotechnol 44, 265–270.[CrossRef]
    [Google Scholar]
  66. Ranjard, L. & Richaume, A. ( 2001; ). Quantitative and qualitative microscale distribution of bacteria in soil. Res Microbiol 152, 707–716.[CrossRef]
    [Google Scholar]
  67. Ratajczak, A., Geißdörfer, W. & Hillen, W. ( 1998; ). Expression of alkane hydroxylase from Acinetobacter sp. strain ADP1 is induced by a broad range of n-alkanes and requires the transcriptional activator AlkR. J Bacteriol 180, 5822–5827.
    [Google Scholar]
  68. Ross, N., Villemur, R., Deschênes, L. & Samson, R. ( 2001; ). Clogging of a limestone fracture by stimulating groundwater microbes. Water Res 23, 2029–2037.
    [Google Scholar]
  69. Sambrook, J. & Russell, D. W. ( 2001; ). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  70. Saul, D. J., Aislabie, J. M., Brown, C. E., Harris, L. & Foght, J. M. ( 2005; ). Hydrocarbon contamination changes the bacterial diversity of soil from around Scott Base, Antarctica. FEMS Microbiol Ecol 53, 141–155.[CrossRef]
    [Google Scholar]
  71. Schloss, P. D. & Handelsman, J. ( 2005; ). Introducing dotur, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71, 1501–1506.[CrossRef]
    [Google Scholar]
  72. Schloss, P. D. & Handelsman, J. ( 2006; ). Introducing TreeClimber, a test to compare microbial community structures. Appl Environ Microbiol 72, 2379–2384.[CrossRef]
    [Google Scholar]
  73. Slatkin, M. ( 1991; ). Inbreeding coefficients and coalescent times. Genet Res 58, 167–175.[CrossRef]
    [Google Scholar]
  74. Smit, E., Leeflang, P., Gommans, S., van den Broek, J., van Mil, S. & Wernars, K. ( 2001; ). Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods. Appl Environ Microbiol 67, 2284–2291.[CrossRef]
    [Google Scholar]
  75. Tesar, M., Reichenauer, T. G. & Sessitsch, A. ( 2002; ). Bacterial rhizosphere populations of black poplar and herbal plants to be used for phytoremediation of diesel fuel. Soil Biol Biochem 34, 1883–1892.[CrossRef]
    [Google Scholar]
  76. Thiel, M., Kaschabek, S. R., Gröning, J., Mau, M. & Schlömann, M. ( 2005; ). Two unusual chlorocatechol catabolic gene clusters in Sphingomonas sp. TFD44. Arch Microbiol 183, 80–94.[CrossRef]
    [Google Scholar]
  77. Torsvik, V., Goksøyr, J. & Daae, F. L. ( 1990; ). High diversity in DNA of soil bacteria. Appl Environ Microbiol 56, 782–787.
    [Google Scholar]
  78. Trevors, J. T. ( 1996; ). DNA in soil: adsorption, genetic transformation, molecular evolution and genetic microchip. Antonie van Leeuwenhoek 70, 1–10.[CrossRef]
    [Google Scholar]
  79. Urbach, E., Vergin, K. L., Morse, A., Larson, G. L. & Giovannoni, S. J. ( 2001; ). Unusual bacterioplankton community structure in ultra-oligotrophic Crater Lake. Limnol Oceanogr 46, 557–572.[CrossRef]
    [Google Scholar]
  80. Verwaltungs- und Verwertungsgesellschaft Industriegelände Rositz ( 1998; ). Teerverarbeitungswerk Rositz – Meilensteine der Unternehmensgeschichte 1917–1998. Jena: Verwaltungs- und Verwertungsgesellschaft Industriegelände Rositz (in German).
  81. Vildanova-Martsishin, R. I., Turovsky, A. A. & Zaikov, G. E. ( 2002; ). Research of kinetic parameters of growth of the bacterial strain Rhodococcus luteus on different substrates. Oxidation Communications 25, 587–595.
    [Google Scholar]
  82. Volkering, F., Breure, A. M. & Rulkens, W. H. ( 1998; ). Microbiological aspects of surfactant use for biological soil remediation. Biodegradation 8, 401–417.
    [Google Scholar]
  83. Vomberg, A. & Klinner, U. ( 2000; ). Distribution of alkB genes within n-alkane-degrading bacteria. J Appl Microbiol 89, 339–348.[CrossRef]
    [Google Scholar]
  84. Watanabe, K. ( 2001; ). Microorganisms relevant to bioremediation. Curr Opin Biotechnol 12, 237–241.[CrossRef]
    [Google Scholar]
  85. Watanabe, K., Watanabe, K., Kodama, Y., Syutsubo, K. & Harayama, S. ( 2000; ). Molecular characterization of bacterial populations in petroleum-contaminated groundwater discharged from underground crude oil storage cavities. Appl Environ Microbiol 66, 4803–4809.[CrossRef]
    [Google Scholar]
  86. Watanabe, K., Kodama, Y. & Kaku, N. ( 2002; ). Diversity and abundance of bacteria in an underground oil-storage cavity. BMC Microbiol 2, 23.[CrossRef]
    [Google Scholar]
  87. Wikström, P., Wiklund, A., Andersson, A. C. & Forsman, M. ( 1996; ). DNA recovery and PCR quantification of catechol 2,3-dioxygenase genes from different soil types. J Biotechnol 52, 107–120.[CrossRef]
    [Google Scholar]
  88. Wolf, A., Wiese, J., Jost, G. & Witzel, K.-P. ( 2003; ). Wide geographic distribution of bacteriophages that lyse the same indigenous freshwater isolate (Sphingomonas sp. strain B18). Appl Environ Microbiol 69, 2395–2398.[CrossRef]
    [Google Scholar]
  89. Yakimov, M. M., Denaro, R., Genovese, M., Cappello, S., D'Auria, G., Chernikova, T. N., Timmis, K. N., Golyshin, P. N. & Giluliano, L. ( 2005; ). Natural microbial diversity in superficial sediments of Milazzo Harbor (Sicily) and community successions during microcosm enrichment with various hydrocarbons. Environ Microbiol 7, 1426–1441.[CrossRef]
    [Google Scholar]
  90. Yu, Z., Stewart, G. R. & Mohn, W. W. ( 2000; ). Apparent contradiction: psychrotolerant bacteria from hydrocarbon-contaminated arctic tundra soils that degrade diterpenoids synthesized by trees. Appl Environ Microbiol 66, 5148–5154.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.29054-0
Loading
/content/journal/micro/10.1099/mic.0.29054-0
Loading

Data & Media loading...

Supplements

Supplementary Fig. S1. [PDF file](884 KB)

PDF

Supplementary Fig. S2. [PDF file](849 KB)

PDF

Supplementary Fig. S3. [PDF file](15 KB)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error