1887

Abstract

The long-chain acyl-CoA synthase (ACS) FadD1 plays an important role in timing the levels of antibiotic production in and , encoding a putative medium-chain ACS, are part of a two-gene operon, whose expression is induced during the stationary phase of growth. Here it is reported that transcription of the operon is positively regulated by AcsR, a LuxR-type transcriptional regulator. In an mutant, expression of the genes loses its normal up-regulation and the mutant becomes deficient in antibiotic production, in a clear correlation with the phenotype shown by a null mutant. The absence of induction in the mutant was restored by complementation with a wild-type copy of the gene, showing a strict link between AcsR and induction of the operon. Gel mobility shift assays and DNase I footprinting indicated that AcsR binds to specific sequences about +162 nucleotides downstream of the transcriptional start site. In the putative operator sequence three almost identical direct tandem repeats of seven nucleotides were identified where the central sequence is essential for AcsR recognition and binding. Transcriptional fusions of the divergent p and p promoters indicated that AcsR does not regulate its own transcription, and that it binds to the operator region to control exclusively the growth-phase induction of the operon.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28553-0
2006-05-01
2024-12-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/5/1427.html?itemId=/content/journal/micro/10.1099/mic.0.28553-0&mimeType=html&fmt=ahah

References

  1. Aigle B., Wietzorrek A., Takano E., Bibb M. J. 2000; A single amino acid substitution in region 1.2 of the principal sigma factor of Streptomyces coelicolor A3(2) results in pleiotropic loss of antibiotic production. Mol Microbiol 37:995–1004 [CrossRef]
    [Google Scholar]
  2. Banchio C., Gramajo H. C. 1997; Medium- and long-chain fatty acid uptake and utilization by Streptomyces coelicolor A3(2): first characterization of a Gram-positive bacterial system. Microbiology 143:2439–2447 [CrossRef]
    [Google Scholar]
  3. Banchio C., Gramajo H. C. 2002; A stationary-phase acyl-coenzyme A synthetase of Streptomyces coelicolor A3(2) is necessary for the normal onset of antibiotic production. Appl Environ Microbiol 68:4240–4246 [CrossRef]
    [Google Scholar]
  4. Bierman M., Logan R., O'Brien K., Seno E. T., Rao R. N., Schoner B. E. 1992; Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116:43–49 [CrossRef]
    [Google Scholar]
  5. Black P. N., Dirusso C. 1994; Molecular and biochemical analyses of fatty acid transport, metabolism, and gene regulation in Escherichia coli . Biochim Biophys Acta 1210:123–145 [CrossRef]
    [Google Scholar]
  6. Blondelet-Rouault M. H., Weiser J., Lebrihi A., Branny P., Pernodet J.-L. 1997; Antibiotic resistance gene cassettes derived from the Ω interposon for use in E. coli and Streptomyces . Gene 190:315–317 [CrossRef]
    [Google Scholar]
  7. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 [CrossRef]
    [Google Scholar]
  8. Brennan R. G., Matthews B. W. 1989; The helix-turn-helix DNA binding motif. J Biol Chem 264:1903–1906
    [Google Scholar]
  9. Brofman M., Orenella A., Morales M. N., Bieri F., Waechter F., Staubli W., Bently P. 2005; Potentiation of diacylglycerol-activated protein kinase C by acyl-coenzyme A thioesters of hypolipidaemic drugs. Biochem Biophys Res Commun 159:1026–1031
    [Google Scholar]
  10. Browning D. F., Busby S. J. 2004; The regulation of bacterial transcription initiation. Nat Rev Microbiol 2:57–65 [CrossRef]
    [Google Scholar]
  11. Bystrykh L. V., Fernandez-Moreno M. A., Herrema J. K., Malpartida F., Hopwood D. A., Dijkhuizen L. 1996; Production of actinorhodin-related ‘blue pigments' by Streptomyces coelicolor A3(2. J Bacteriol 178:2238–2244
    [Google Scholar]
  12. Cole S. T., Brosch R., Parkhill J. 39 other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544 [CrossRef]
    [Google Scholar]
  13. Collado-Vides J., Magasanik B., Gralla B. 1991; Control site location and transcriptional regulation in Escherichia coli . Microbiol Rev 55:371–394
    [Google Scholar]
  14. Dirusso C., Heimert T. L., Metzger A. K. 1992; Characterization of FadR, a global transcriptional regulator of fatty acid metabolism in Escherichia coli . Interaction with the fadB promoter is prevented by long chain fatty acyl coenzyme A. J Biol Chem 267:8685–8691
    [Google Scholar]
  15. Ellinger T., Behnke D., Bujard H., Gralla J. D. 1994; Stalling of Escherichia coli RNA polymerase in the +6 to +12 region in vivo is associated with tight binding to consensus promoter elements. J Mol Biol 239:455–465 [CrossRef]
    [Google Scholar]
  16. Fujino T., Takei Y. A., Sone H., Ioka R. X., Kamataki A., Magoori K., Takahashi S., Sakai J., Yamamoto T. T. 2001; Molecular identification and characterization of two medium-chain acyl-CoA synthetases, MACS1 and the Sa gene product. J Biol Chem 276:35961–35966 [CrossRef]
    [Google Scholar]
  17. Gonzalez-Ceron G., Licona P., Servin-Gonzalez L. 2001; Modified xylE and xylTE reporter genes for use in Streptomyces: analysis of the effect of xylT . FEMS Microbiol Lett 196:229–234 [CrossRef]
    [Google Scholar]
  18. Gordon J. I. 1990; Protein N -myristoylation: simple questions, unexpected answers. Clin Res 38:517–528
    [Google Scholar]
  19. Guthrie E. P., Flaxman C. S., White J., Hodgson A. D., Bibb M. J., Chater F. K. 1998; A response-regulator-like activator of antibiotic synthesis from Streptomyces coelicolor A3(2) with an amino-terminal domain that lacks a phosphorylation pocket. Microbiology 144:727–738 [CrossRef]
    [Google Scholar]
  20. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580 [CrossRef]
    [Google Scholar]
  21. Herman-Antosiewicz A., Wegrzyn A., Taylor K., Wegrzyn G. 1998; DnaA-mediated regulation of phage lambda-derived replicons in the absence of pR and Cro function. Virology 249:98–107 [CrossRef]
    [Google Scholar]
  22. Hillemann D., Puhler A., Wohlleben W. 1991; Gene disruption and gene replacement in Streptomyces via single stranded DNA transformation of integration vectors. Nucleic Acids Res 19:727–731 [CrossRef]
    [Google Scholar]
  23. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. 1989; Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77:51–59 [CrossRef]
    [Google Scholar]
  24. Holzinger A., Phillips K. S., Weaver T. E. 1996; Single-step purification/solubilization of recombinant proteins: application to surfactant protein B. Biotechniques 20:804–808
    [Google Scholar]
  25. Kameda K., Nunn W. D. 1981; Purification and characterization of acyl coenzyme A synthetase from Escherichia coli . J Biol Chem 256:5702–5707
    [Google Scholar]
  26. Kieser T., Bibb W. D., Buttner M. J., Chater K. F., Hopwood D. A. 2000 Practical Streptomyces Genetics Norwich: John Innes Centre;
    [Google Scholar]
  27. Korchak H. M., Kane L. H., Rossi M. W., Corkey B. E. 1994; Long chain acyl coenzyme A and signaling in neutrophils. An inhibitor of acyl coenzyme A synthetase, triacsin C, inhibits superoxide anion generation and degranulation by human neutrophils. J Biol Chem 269:30281–30287
    [Google Scholar]
  28. Liu W., Qi Y., Hulett F. M. 1998; Sites internal to the coding regions of phoA and pstS bind PhoP and are required for full promoter activity. Mol Microbiol 28:119–130
    [Google Scholar]
  29. Marinus M. G., Morris N. R. 1974; Biological function for 6-methyladenine residues in the DNA of Escherichia coli K-12. J Mol Biol 85:309–322 [CrossRef]
    [Google Scholar]
  30. Mullis K. B., Faloona F. A. 1987; Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol 155:335–350
    [Google Scholar]
  31. Munson G. P., Scott J. R. 2000; Rns, a virulence regulator within the AraC family, requires binding sites upstream and downstream of its own promoter to function as an activator. Mol Microbiol 36:1391–1402
    [Google Scholar]
  32. Munson G. P., Holcomb L. G., Scott J. R. 2001; Novel group of virulence activators within the AraC family that are not restricted to upstream binding sites. Infect Immun 69:186–193 [CrossRef]
    [Google Scholar]
  33. Nishihara K., Kanemori M., Yanagi H., Yura T. 2000; Overexpression of trigger factor prevents aggregation of recombinant proteins in Escherichia coli . Appl Environ Microbiol 66:884–889 [CrossRef]
    [Google Scholar]
  34. Olukoshi E. R., Packter N. M. 1994; Importance of stored triacylglycerols in Streptomyces : possible carbon source for antibiotics. Microbiology 140:931–943 [CrossRef]
    [Google Scholar]
  35. Overath P., Pauli G., Schairer H. U. 1969; Fatty acid degradation in Escherichia coli . An inducible acyl-CoA synthetase, the mapping of old-mutations, and the isolation of regulatory mutants. Eur J Biochem 7:559–574
    [Google Scholar]
  36. Packter N. M., Olukoshi E. R. 1995; Ultrastructural studies of neutral lipid localisation in Streptomyces . Arch Microbiol 164:420–427 [CrossRef]
    [Google Scholar]
  37. Paget M. S. B., Leibovitz E., Buttner M. J. 1999; A putative two-component signal transduction system regulates σE, a sigma factor required for normal cell wall integrity in Streptomyces coelicolor A3(2. Mol Microbiol 33:97–107 [CrossRef]
    [Google Scholar]
  38. Pfanner N., Orci L., Glick B. S., Amherdt M., Arden S. R., Malhotra V., Rothman J. E. 1989; Fatty acyl-coenzyme A is required for budding of transport vesicles from Golgi cisternae. Cell 59:95–102 [CrossRef]
    [Google Scholar]
  39. Qi Y., Hulett F. M. 1998; PhoP∼P and RNA polymerase σA holoenzyme are sufficient for transcription of Pho regulon promoters in Bacillus subtilis : PhoP∼P activator sites within the coding region stimulate transcription in vitro . Mol Microbiol 28:1187–1197 [CrossRef]
    [Google Scholar]
  40. Redenbach M., Kieser H. M., Denapaite D., Eichner A., Cullum J., Kinashi H., Hopwood D. A. 1996; A set of ordered cosmids and a detailed genetic and physical map for the 8 Mb Streptomyces coelicolor A3(2) chromosome. Mol Microbiol 21:77–96 [CrossRef]
    [Google Scholar]
  41. Rodriguez E., Banchio C., Diacovich L., Bibb M. J., Gramajo H. C. 2001; Role of an essential acyl coenzyme A carboxylase in the primary and secondary metabolism of Streptomyces coelicolor A3(2). Appl Environ Microbiol 67:4166–4176 [CrossRef]
    [Google Scholar]
  42. Rodriguez E., Ward S., Fu H., Revill W. P., McDaniel R., Katz L. 2004; Engineered biosynthesis of 16-membered macrolides that require methoxymalonyl-ACP precursors in Streptomyces fradiae . Appl Microbiol Biotechnol 66:85–91 [CrossRef]
    [Google Scholar]
  43. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. 1988; Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491 [CrossRef]
    [Google Scholar]
  44. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  45. Strohl W. R. 1992; Compilation and analysis of DNA sequences associated with apparent streptomycete promoters. Nucleic Acids Res 20:961–974 [CrossRef]
    [Google Scholar]
  46. Studier F. W., Moffatt B. A. 1986; Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189:113–130 [CrossRef]
    [Google Scholar]
  47. Takano E., Gramajo H. C., Strauch E., Andres N., White J., Bibb M. J. 1992; Transcriptional regulation of the redD transcriptional activator gene accounts for growth-phase-dependent production of the antibiotic undecylprodigiosin in Streptomyces coelicolor A3(2). Mol Microbiol 6:2797–2804 [CrossRef]
    [Google Scholar]
  48. Thomas J. G., Ayling A., Baneyx F. 1997; Molecular chaperones, folding catalysts, and the recovery of active recombinant proteins from E. coli . To fold or to refold. Appl Biochem Biotechnol 66:197–238 [CrossRef]
    [Google Scholar]
  49. Watkins P. A. 1997; Fatty acid activation. Prog Lipid Res 36:55–83 [CrossRef]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.28553-0
Loading
/content/journal/micro/10.1099/mic.0.28553-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error