1887

Abstract

Bacterial butyryl-CoA CoA-transferase activity plays a key role in butyrate formation in the human colon, but the enzyme and corresponding gene responsible for this activity have not previously been identified. A novel CoA-transferase gene is described from the colonic bacterium sp. A2-183, with similarity to acetyl-CoA hydrolase as well as 4-hydroxybutyrate CoA-transferase sequences. The gene product, overexpressed in an lysate, showed activity with butyryl-CoA and to a lesser degree propionyl-CoA in the presence of acetate. Butyrate, propionate, isobutyrate and valerate competed with acetate as the co-substrate. Despite the sequence similarity to 4-hydroxybutyrate CoA-transferases, 4-hydroxybutyrate did not compete with acetate as the co-substrate. Thus the CoA-transferase preferentially uses butyryl-CoA as substrate. Similar genes were identified in other butyrate-producing human gut bacteria from clostridial clusters IV and XIVa, while other candidate CoA-transferases for butyrate formation could not be detected in sp. A2-183. This suggests strongly that the newly identified group of CoA-transferases described here plays a key role in butyrate formation in the human colon.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28412-0
2006-01-01
2020-08-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/1/179.html?itemId=/content/journal/micro/10.1099/mic.0.28412-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F, Gish W, Miller W, Myers E. W, Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol215:403–410[CrossRef]
    [Google Scholar]
  2. Asanuma N, Kawato M, Ohkawara S, Hino T. 2003; Characterization and transcription of the genes encoding enzymes involved in butyrate production in Butyrivibrio fibrisolvens . Curr Microbiol47:203–207[CrossRef]
    [Google Scholar]
  3. Ausubel F. M, Brent R, Kingston R. E, Moore D. D, Seidman J. G, Smith J. A, Struhl K. 1994; Current Protocols in Molecular Biology New York: Wiley;
    [Google Scholar]
  4. Barcenilla A, Pryde S. E, Martin J. C, Duncan S. H, Stewart C. S, Henderson C, Flint H. J. 2000; Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl Environ Microbiol66:1654–1661[CrossRef]
    [Google Scholar]
  5. Barker H. A, Jeng I.-M, Neff N, Robertson J. M, Tam F. K, Hosaka S. 1978; Butyryl-CoA : acetoacetate CoA-transferase from a lysine-fermenting Clostridium . J Biol Chem253:1219–1225
    [Google Scholar]
  6. Bennett G. N, Rudolph F. B. 1995; The central metabolic pathway from acetyl-CoA to butyryl-CoA in Clostridium acetobutylicum . FEMS Microbiol Rev17:241–249[CrossRef]
    [Google Scholar]
  7. Blaut M, Collins M. D, Welling G. W, Doré J, van Loo J, de Vos W. 2002; Molecular biological methods for studying the gut microbiota: the EU human gut flora project. Br J Nutr87:S203–S211[CrossRef]
    [Google Scholar]
  8. Boynton Z. L, Bennett G. N, Rudolph F. B. 1996; Cloning, sequencing, and expression of clustered genes encoding β -hydroxybutyryl-coenzyme A (CoA) dehydrogenase, crotonase, and butyryl-CoA dehydrogenase from Clostridium acetobutylicum ATCC 824. J Bacteriol178:3015–3024
    [Google Scholar]
  9. Buckel W, Dorn U, Semmler R. 1981; Glutaconate CoA-transferase from Acidaminococcus fermentans . Eur J Biochem118:315–321
    [Google Scholar]
  10. Cleland W. W. 1970; Steady state kinetics. In The Enzyme s, 3rd edn.Vol. 2 pp 1–65 Edited by Boyer P. D.. New York: Academic Press;
    [Google Scholar]
  11. Diez-Gonzalez F, Bond D. R, Jennings E, Russell J. B. 1999; Alternative schemes of butyrate production in Butyrivibrio fibrisolvens and their relationship to acetate utilization, lactate production, and phylogeny. Arch Microbiol171:324–330[CrossRef]
    [Google Scholar]
  12. Duncan S. H, Barcenilla A, Stewart C. S, Pryde S. E, Flint H. J. 2002; Acetate utilization and butyryl coenzyme A (CoA): acetate-CoA transferase in butyrate-producing bacteria from the human large intestine. Appl Environ Microbiol68:5186–5190[CrossRef]
    [Google Scholar]
  13. Ewing B, Green P. 1998; Basecalling of automated sequencer traces using phred. II. Error probabilities. Genome Res8:186–194
    [Google Scholar]
  14. Ewing B, Hillier L, Wendl M, Green P. 1998; Basecalling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res8:175–185[CrossRef]
    [Google Scholar]
  15. Fischer R. J, Helms J, Dürre P. 1993; Cloning, sequencing, and molecular analysis of the sol operon of Clostridium acetobutylicum , a chromosomal locus involved in solventogenesis. J Bacteriol175:6959–6969
    [Google Scholar]
  16. Gerhardt A, Cinkaya I, Linder D, Huisman G, Buckel W. 2000; Fermentation of 4-aminobutyrate by Clostridium aminobutyricum : cloning of two genes involved in the formation and dehydration of 4-hydroxybutyryl-CoA. Arch Microbiol174:189–199[CrossRef]
    [Google Scholar]
  17. Gordon D. 2004; Viewing and editing assembled sequences using Consed. In Current Protocols in Bioinformatics pp.11.2.1–11.2.43 Edited by Baxevanis A. D., Davison D. B.. New York: Wiley;
    [Google Scholar]
  18. Heider J. 2001; A new family of CoA-transferases. FEBS Lett509:345–349[CrossRef]
    [Google Scholar]
  19. Louis P, Duncan S. H, McCrae S. I, Millar J, Jackson M. S, Flint H. J. 2004; Restricted distribution of the butyrate kinase pathway among butyrate-producing bacteria from the human colon. J Bacteriol186:2099–2106[CrossRef]
    [Google Scholar]
  20. Macfarlane G. T, Gibson G. R. 1997; Carbohydrate fermentation, energy transduction and gas metabolism in the human large intestine. In Gastrointestinal Microbiology vol. 1 pp 269–318 Edited by Mackie R. I., White B. A.. London: Chapman and Hall;
    [Google Scholar]
  21. Mack M, Buckel W. 1997; Conversion of glutaconate CoA-transferase from Acidaminococcus fermentans into an acyl-CoA hydrolase by site-directed mutagenesis. FEBS Lett405:209–212[CrossRef]
    [Google Scholar]
  22. Miller T. L, Wolin M. J. 1979; Fermentations by saccharolytic intestinal bacteria. Am J Clin Nutr32:164–172
    [Google Scholar]
  23. Ochman H, Gerber A. S, Hartl D. L. 1988; Genetic applications of an inverse polymerase chain reaction. Genetics120:621–623
    [Google Scholar]
  24. Perkins D. N, Pappin D. J, Creasy D. M, Cottrell J. S. 1999; Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis20:3551–3567[CrossRef]
    [Google Scholar]
  25. Pryde S. E, Duncan S. H, Hold G. L, Stewart C. S, Flint H. J. 2002; The microbiology of butyrate formation in the human colon. FEMS Microbiol Lett217:133–139[CrossRef]
    [Google Scholar]
  26. Rincon M. T, Martin J. C, Aurilia V, McCrae S. I, Rucklidge G. J, Reid M. D, Bayer E. A, Lamed R, Flint H. J. 2004; ScaC, an adaptor protein carrying a novel cohesin that expands the dockerin-binding repertoire of the Ruminococcus flavefaciens 17 cellulosome. J Bacteriol186:2576–2585[CrossRef]
    [Google Scholar]
  27. Scherf U, Buckel W. 1991; Purification and properties of 4-hydroxybutyrate coenzyme A transferase from Clostridium aminobutyricum . Appl Environ Microbiol57:2699–2702
    [Google Scholar]
  28. Schweiger G, Buckel W. 1984; On the dehydration of (R)-lactate in the fermentation of alanine to propionate by Clostridium propionicum . FEBS Lett171:79–84[CrossRef]
    [Google Scholar]
  29. Selmer T, Willanzheimer A, Hetzel M. 2002; Propionate CoA-transferase from Clostridium propionicum . Eur J Biochem269:372–380[CrossRef]
    [Google Scholar]
  30. Skantar A. M, Carta L. K. 2000; Amplification of Hsp90 homologs from plant-parasitic nematodes using degenerate primers and ramped annealing PCR. BioTechniques29:1182–1185
    [Google Scholar]
  31. Smith R. F, Wiese B. A, Wojzynski M. K, Davison D. B, Worley K. C. 1996; BCM Search Launcher – an integrated interface to molecular biology data base search and analysis services available on the World Wide Web. Genome Res6:454–462[CrossRef]
    [Google Scholar]
  32. Söhling B, Gottschalk G. 1996; Molecular analysis of the anaerobic succinate degradation pathway in Clostridium kluyveri . J Bacteriol178:871–880
    [Google Scholar]
  33. Sramek S. J, Frerman F. E. 1975; Purification and properties of Escherichia coli coenzyme A-transferase. Arch Biochem Biophys171:14–26[CrossRef]
    [Google Scholar]
  34. Tung K. K, Wood W. A. 1975; Purification, new assay, and properties of coenzyme A transferase from Peptostreptococcus elsdenii . J Bacteriol124:1462–1474
    [Google Scholar]
  35. Valentin H. E, Reiser S, Gruys K. J. 2000; Poly(3-hydroxybutyrate- co -4-hydroxybutyrate) formation from γ -aminobutyrate and glutamate. Biotechnol Bioeng67:291–299[CrossRef]
    [Google Scholar]
  36. Wächtershäuser A, Stein J. 2000; Rationale for the luminal provision of butyrate in intestinal diseases. Eur J Nutr39:164–171[CrossRef]
    [Google Scholar]
  37. Walter K. A, Nair R. V, Cary J. W, Bennett G. N. 1993; Sequence and arrangement of two genes of the butyrate-synthesis pathway of Clostridium acetobutylicum ATCC 824. Gene134:107–111[CrossRef]
    [Google Scholar]
  38. Wiesenborn D. P, Rudolph F. B, Papoutsakis E. T. 1989; Coenzyme A transferase from Clostridium acetobutylicum ATCC 824 and its role in the uptake of acids. Appl Environ Microbiol55:323–329
    [Google Scholar]
  39. Wilkins M. R, Lindskog I, Gasteiger E, Bairoch A, Sanchez J.-C, Hochstrasser D. F, Appel R. D. 1997; Detailed peptide characterisation using peptidemass – a World-Wide Web accessible tool. Electrophoresis18:403–408[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28412-0
Loading
/content/journal/micro/10.1099/mic.0.28412-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error