1887

Abstract

The type III secretion system of is tightly regulated by various environmental signals, such as low calcium and contact with the host cell. However, the exact signals triggering type III secretion are unknown. The present study describes the finding that secretion of type III effector molecules requires protein factors from serum and L broth, designated type III secretion factors (TSFs), in addition to the low-calcium environment. In the absence of TSF or calcium chelator EGTA, basal levels of type III effector molecules are accumulated intracellularly. Addition of TSF and EGTA together effectively triggers the secretion of pre-existing effector molecules in a short time, even before the active expression of type III genes; thus, active type III gene expression does not seem to be a prerequisite for type III secretion. A search for TSF molecules in serum and L broth resulted in the identification of albumin and casein as the functional TSF molecules. Although there is no clear sequence similarity between albumin and casein, both proteins are known to have a low-affinity, high-capacity calcium-binding property. Tests of well-studied calcium-binding proteins seemed to indicate that low-affinity calcium-binding proteins have TSF activity, although the requirement of low-affinity calcium-binding ability for the TSF activity is not clear. seems to have evolved a sensing mechanism to detect target cells for type III injection through host-derived proteins in combination with a low-calcium signal. Disruption of the bacterial ability to sense low calcium or TSF might be a valid avenue to the effective control of this bacterial pathogen.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28277-0
2005-11-01
2020-04-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/11/3575.html?itemId=/content/journal/micro/10.1099/mic.0.28277-0&mimeType=html&fmt=ahah

References

  1. Aballay A., Ausubel F. M. 2002; Caenorhabditis elegans as a host for the study of host–pathogen interactions. Curr Opin Microbiol5:97–101[CrossRef]
    [Google Scholar]
  2. Aguanno J. J., Ladenson J. H. 1982; Influence of fatty acids on the binding of calcium to human albumin: correlation of binding and conformation studies and evidence for distinct differences between unsaturated fatty acids and saturated fatty acids. J Biol Chem257:8745–8748
    [Google Scholar]
  3. Ahn K.-S., Ha U., Jia J., Wu D., Jin S. 2004; The truA gene of Pseudomonas aeruginosa is required for the expression of type III secretory genes. Microbiology150:539–547[CrossRef]
    [Google Scholar]
  4. Berchtold M. W. 1993; Evolution of EF-hand calcium-modulated proteins. V. The genes encoding EF-hand proteins are not clustered in mammalian genomes. J Mol Evol36:489–496[CrossRef]
    [Google Scholar]
  5. Besarab A., DeGuzman A., Swanson J. W. 1981; Effect of albumin and free calcium concentrations on calcium binding in vitro. J Clin Pathol34:1361–1367[CrossRef]
    [Google Scholar]
  6. Bodey G. P., Bolivar R., Fainstein V., Jadeja L. 1983; Infections caused by Pseudomonas aeruginosa . Rev Infect Dis5:279–313[CrossRef]
    [Google Scholar]
  7. Borovikov Y. S. 1999; Conformational changes of contractile proteins and their role in muscle contraction. Int Rev Cytol189:267–301
    [Google Scholar]
  8. Cheng L. W., Schneewind O. 2000; Yersinia enterocolitica TyeA, an intracellular regulator of the type III machinery, is required for specific targeting of YopE, YopH, YopM, and YopN into the cytosol of eukaryotic cells. J Bacteriol182:3183–3190[CrossRef]
    [Google Scholar]
  9. Coburn J., Gill D. M. 1991; ADP-ribosylation of p21 ras and related proteins by Pseudomonas aeruginosa exoenzyme S. Infect Immun59:4259–4262
    [Google Scholar]
  10. Curry S., Brick P., Franks N. P. 1999; Fatty acid binding to human serum albumin: new insights from crystallographic studies. Biochim Biophys Acta 1441;131–140[CrossRef]
    [Google Scholar]
  11. Dacheux D., Epaulard O., de Groot A., Guery B., Leberre R., Attree I., Polack B., Toussaint B. 2002; Activation of the Pseudomonas aeruginosa type III secretion system requires an intact pyruvate dehydrogenase aceAB operon. Infect Immun70:3973–3977[CrossRef]
    [Google Scholar]
  12. D'Argenio D. A., Gallagher L. A., Berg C. A., Manoil C. 2001; Drosophila as a model host for Pseudomonas aeruginosa infection. J Bacteriol183:1466–1471[CrossRef]
    [Google Scholar]
  13. Davis B. D., Mingioli E. S. 1950; Mutants of Escherichia coli requiring methionine or vitamin B12. J Bacteriol60:17–28
    [Google Scholar]
  14. Day J. B., Plano G. V. 1998; A complex composed of SycN and YscB functions as a specific chaperone for YopN in Yersinia pestis . Mol Microbiol30:777–788[CrossRef]
    [Google Scholar]
  15. Deretic V., Schurr M. J., Yu H. 1995; Pseudomonas aeruginosa , mucoidy and the chronic infection phenotype in cystic fibrosis. Trends Microbiol3:351–356[CrossRef]
    [Google Scholar]
  16. Farah C. S., Reinach F. C. 1995; The troponin complex and regulation of muscle contraction. FASEB J9:755–767
    [Google Scholar]
  17. Farrell H. M. Jr, Kumosinski T. F., Malin E. L., Brown E. M. 2002; The caseins of milk as calcium-binding proteins. Methods Mol Biol172:97–140
    [Google Scholar]
  18. Finck-Barbancon V., Goranson J., Zhu L., Sawa T., Wiener-Kronish J. P., Fleiszig S. M., Wu C., Mende-Mueller L., Frank D. W. 1997; ExoU expression by Pseudomonas aeruginosa correlates with acute cytotoxicity and epithelial injury. Mol Microbiol25:547–557[CrossRef]
    [Google Scholar]
  19. Fogh-Andersen N. 1977; Albumin/calcium association at different pH, as determined by potentiometry. Clin Chem23:2122–2126
    [Google Scholar]
  20. Forsberg Å., Viitanen A. M., Skurnik M., Wolf-Watz H. 1991; The surface-located YopN protein is involved in calcium signal transduction in Yersinia pseudotuberculosis . Mol Microbiol5:977–986[CrossRef]
    [Google Scholar]
  21. Frank D. W. 1997; The exoenzyme S regulon of Pseudomonas aeruginosa . Mol Microbiol26:621–629[CrossRef]
    [Google Scholar]
  22. Frank D. W., Nair G., Schweizer H. P. 1994; Construction and characterization of chromosomal insertional mutations of the Pseudomonas aeruginosa exoenzyme S trans -regulatory locus. Infect Immun62:554–563
    [Google Scholar]
  23. Frithz-Lindsten E., Du Y., Rosqvist R., Forsberg . 1997; Intracellular targeting of exoenzyme S of Pseudomonas aeruginosa via type III-dependent translocation induces phagocytosis resistance, cytotoxicity and disruption of actin microfilaments. Mol Microbiol25:1125–1139[CrossRef]
    [Google Scholar]
  24. Frithz-Lindsten E., Holmström A., Jacobsson L., Soltani M., Olsson J., Rosqvist R, Forsberg . 1998; Functional conservation of the effector protein translocators PopB/YopB and PopD/YopD of Pseudomonas aeruginosa and Yersinia pseudotuberculosis . Mol Microbiol29:1155–1165[CrossRef]
    [Google Scholar]
  25. Ganesan A. K., Frank D. W., Misra R. P., Schmidt G., Barbieri J. T. 1998; Pseudomonas aeruginosa exoenzyme S ADP-ribosylates Ras at multiple sites. J Biol Chem273:7332–7337[CrossRef]
    [Google Scholar]
  26. Ha U., Jin S. 2001; Growth phase-dependent invasion of Pseudomonas aeruginosa and its survival within HeLa cells. Infect Immun69:4398–4406[CrossRef]
    [Google Scholar]
  27. Ha U.-H., Kim J., Badrane H., Jia J., Baker H. V., Wu D., Jin S. 2004; An in vivo inducible gene of Pseudomonas aeruginosa encodes an anti-ExsA to suppress the type III secretion system. Mol Microbiol54:307–320[CrossRef]
    [Google Scholar]
  28. Hauser A. R., Kang P. J., Engel J. N. 1998; PepA, a secreted protein of Pseudomonas aeruginosa , is necessary for cytotoxicity and virulence. Mol Microbiol27:807–818[CrossRef]
    [Google Scholar]
  29. Heizmann C. W., Berchtold M. W. 1987; Expression of parvalbumin and other Ca2+-binding proteins in normal and tumor cells: a topical review. Cell Calcium8:1–41[CrossRef]
    [Google Scholar]
  30. Hogardt M., Roeder M., Schreff A. M., Eberl L., Heesemann J. 2004; Expression of Pseudomonas aeruginosa exoS is controlled by quorum sensing and RpoS. Microbiology150:843–851[CrossRef]
    [Google Scholar]
  31. Holder I. A. 1993; Pseudomonas aeruginosa virulence associated factors and their role in burn wound infections. In Pseudomonas aeruginosa, the Opportunist: Pathogenesis and Disease pp.235–245 Edited by Fick R. B. Jr. Boca Raton, FL: CRC Press;
    [Google Scholar]
  32. Hovey A. K., Frank D. W. 1995; Analyses of the DNA-binding and transcriptional activation properties of ExsA, the transcriptional activator of the Pseudomonas aeruginosa exoenzyme S regulon. J Bacteriol177:4427–4436
    [Google Scholar]
  33. Hueck C. J. 1998; Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev62:379–433
    [Google Scholar]
  34. Jia J., Alaoui-El-Azher M., Chow M., Chambers T. C., Baker H., Jin S. 2003; c-Jun NH2-terminal kinase-mediated signaling is essential for Pseudomonas aeruginosa ExoS-induced apoptosis. Infect Immun71:3361–3370[CrossRef]
    [Google Scholar]
  35. Kaufman M. R., Jia J., Zeng L., Ha U., Chow M., Jin S. 2000; Pseudomonas aeruginosa mediated apoptosis requires the ADP-ribosylating activity of ExoS. Microbiology146:2531–2541
    [Google Scholar]
  36. Kragh-Hansen U., Vorum H. 1993; Quantitative analyses of the interaction between calcium ions and human serum albumin. Clin Chem39:202–208
    [Google Scholar]
  37. Lee V. T., Mazmanian S. K., Schneewind O. 2001; A program of Yersinia enterocolitica type III secretion reactions is activated by specific signals. J Bacteriol183:4970–4978[CrossRef]
    [Google Scholar]
  38. Lory S., Strom M. S. 1997; Structure-function relationship of type-IV prepilin peptidase of Pseudomonas aeruginosa – a review. Gene192:117–121[CrossRef]
    [Google Scholar]
  39. Matson J. S., Nilles M. L. 2001; LcrG-LcrV interaction is required for control of Yops secretion in Yersinia pestis . J Bacteriol183:5082–5091[CrossRef]
    [Google Scholar]
  40. McCaw M. L., Lykken G. L., Singh P. K., Yahr T. L. 2002; ExsD is a negative regulator of the Pseudomonas aeruginosa type III secretion regulon. Mol Microbiol46:1123–1133[CrossRef]
    [Google Scholar]
  41. Ménard R., Sansonetti P., Parsot C. 1994; The secretion of the Shigella flexneri Ipa invasins is activated by epithelial cells and controlled by IpaB and IpaD. EMBO J13:5293–5302
    [Google Scholar]
  42. Miller J. H. 1972; Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  43. Muller S., Feldman M. F., Cornelis G. R. 2001; The type III secretion system of Gram-negative bacteria: a potential therapeutic target?. Expert Opin Ther Targets5:327–339[CrossRef]
    [Google Scholar]
  44. Nilles M. L., Williams A. W., Skrzypek E., Straley S. C. 1997; Yersinia pestis LcrV forms a stable complex with LcrG and may have a secretion-related regulatory role in the low-Ca2+ response. J Bacteriol179:1307–1316
    [Google Scholar]
  45. Pederson K. J., Vallis A. J., Aktories K., Frank D. W., Barbieri J. T. 1999; The amino-terminal domain of Pseudomonas aeruginosa ExoS disrupts actin filaments via small-molecular-weight GTP-binding proteins. Mol Microbiol32:393–401[CrossRef]
    [Google Scholar]
  46. Persechini A., Moncrief N. D., Kretsinger R. H. 1989; The EF-hand family of calcium-modulated proteins. Trends Neurosci12:462–467[CrossRef]
    [Google Scholar]
  47. Pettersson J., Nordfelth R., Dubinina E., Bergman T., Gustafsson M., Magnusson K. E., Wolf-Watz H. 1996; Modulation of virulence factor expression by pathogen target cell contact. Science273:1231–1233[CrossRef]
    [Google Scholar]
  48. Pier G. B. 2002; CFTR mutations and host susceptibility to Pseudomonas aeruginosa lung infection. Curr Opin Microbiol5:81–86[CrossRef]
    [Google Scholar]
  49. Rahme L. G., Stevens E. J., Wolfort S. F., Shao J., Tompkins R. G., Ausubel F. M. 1995; Common virulence factors for bacterial pathogenicity in plants and animals. Science268:1899–1902[CrossRef]
    [Google Scholar]
  50. Ramphal R., Koo L., Ishimoto K. S., Totten P. A., Lara J. C., Lory S. 1991; Adhesion of Pseudomonas aeruginosa pilin-deficient mutants to mucin. Infect Immun59:1307–1311
    [Google Scholar]
  51. Rietsch A., Wolfgang M. C., Mekalanos J. J. 2004; Effect of metabolic imbalance on expression of type III secretion genes in Pseudomonas aeruginosa . Infect Immun72:1383–1390[CrossRef]
    [Google Scholar]
  52. Rosqvist R., Magnusson K.-E., Wolf-Watz H. 1994; Target cell contact triggers expression and polarized transfer of Yersinia YopE cytotoxin into mammalian cells. EMBO J13:964–972
    [Google Scholar]
  53. Sambrook J., Fritsch E. F., Maniatis T. 1989; Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  54. Sato H., Feix J. B., Hillard C. J., Frank D. W. 2005; Characterization of phospholipase activity of the Pseudomonas aeruginosa type III cytotoxin. ExoU. J Bacteriol187:1192–1195[CrossRef]
    [Google Scholar]
  55. Sawa T., Yahr T. L., Ohara M., Kurahashi K., Gropper M. A., Wiener-Kronish J. P., Frank D. W. 1999; Active and passive immunization with the Pseudomonas V antigen protects against type III intoxication and lung injury. Nat Med5:392–398[CrossRef]
    [Google Scholar]
  56. Schweizer H. P. 1991; Escherichia - Pseudomonas shuttle vectors derived from pUC18/19. Gene97:109–121[CrossRef]
    [Google Scholar]
  57. Swaisgood H. E. 1993; Review and update of casein chemistry. J Dairy Sci76:3054–3061[CrossRef]
    [Google Scholar]
  58. Totten P. A., Lory S. 1990; Characterization of the type a flagellin gene from Pseudomonas aeruginosa PAK. J Bacteriol172:7188–7199
    [Google Scholar]
  59. Vallis A. J., Yahr T. L., Barbieri J. T., Frank D. W. 1999; Regulation of ExoS production and secretion by Pseudomonas aeruginosa in response to tissue culture conditions. Infect Immun67:914–920
    [Google Scholar]
  60. Vasil M. L., Ochsner U. A. 1999; The response of Pseudomonas aeruginosa to iron: genetics, biochemistry and virulence. Mol Microbiol34:399–413[CrossRef]
    [Google Scholar]
  61. Vogel H. J. 2002; Calcium-binding Protein Protocols (Methods in Molecular Biologyno 173 pp172–173 Totowa, NJ: Humana Press;
    [Google Scholar]
  62. Vorum H., Fisker K., Otagiri M., Pedersen A. O., Kragh-Hansen U. 1995; Calcium ion binding to clinically relevant chemical modifications of human serum albumin. Clin Chem41:1654–1661
    [Google Scholar]
  63. Wolfgang M. C., Lee V. T., Gilmore M. E., Lory S. 2003; Coordinate regulation of bacterial virulence genes by a novel adenylate cyclase-dependent signaling pathway. Dev Cell4:253–263[CrossRef]
    [Google Scholar]
  64. Yahr T. L., Frank D. W. 1994; Transcriptional organization of the trans -regulatory locus which controls exoenzyme S synthesis in Pseudomonas aeruginosa . J Bacteriol176:3832–3838
    [Google Scholar]
  65. Yahr T. L., Hovey A. K., Kulich S. M., Frank D. W. 1995; Transcriptional analysis of the Pseudomonas aeruginosa exoenzyme S structural gene. J Bacteriol177:1169–1178
    [Google Scholar]
  66. Yahr T. L., Goranson J., Frank D. W. 1996; Exoenzyme S of Pseudomonas aeruginosa is secreted by a type III pathway. Mol Microbiol22:991–1003[CrossRef]
    [Google Scholar]
  67. Yahr T. L., Vallis A. J., Hancock M. K., Barbieri J. T., Frank D. W. 1998; ExoY, an adenylate cyclase secreted by the Pseudomonas aeruginosa type III system. Proc Natl Acad Sci U S A95:13899–13904[CrossRef]
    [Google Scholar]
  68. Zaborina O., Li X., Cheng G., Kapatral V., Chakrabarty A. M. 1999a; Secretion of ATP-utilizing enzymes, nucleoside diphosphate kinase and ATPase, by Mycobacterium bovis BCG: sequestration of ATP from macrophage P2Z receptors?. Mol Microbiol31:1333–1343[CrossRef]
    [Google Scholar]
  69. Zaborina O., Misra N., Kostal J., Kamath S., Kapatral V., El-Idrissi M. E.-A., Prabhakar B. S., Chakrabarty A. M. 1999b; P2Z-independent and P2Z receptor-mediated macrophage killing by Pseudomonas aeruginosa isolated from cystic fibrosis patients. Infect Immun67:5231–5242
    [Google Scholar]
  70. Zhang Z., Jin J.-P., Root D. D. 2004; Binding of calcium ions to an avian flight muscle troponin T. Biochemistry43:2645–2655[CrossRef]
    [Google Scholar]
  71. Zierler M. K., Galán J. E. 1995; Contact with cultured epithelial cells stimulates secretion of Salmonella typhimurium invasion protein InvJ. Infect Immun63:4024–4028
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28277-0
Loading
/content/journal/micro/10.1099/mic.0.28277-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error