-
Volume 151,
Issue 11,
2005
Volume 151, Issue 11, 2005
- Microbiology Comment
- Type Iv Secretion
-
-
Peptidoglycan degradation by specialized lytic transglycosylases associated with type III and type IV secretion systems
Specialized lytic transglycosylases are muramidases capable of locally degrading the peptidoglycan meshwork of Gram-negative bacteria. Specialized lytic transglycosylase genes are present in clusters encoding diverse macromolecular transport systems. This paper reports the analysis of selected members of the specialized lytic transglycosylase family from type III and type IV secretion systems. These proteins were analysed in vivo by assaying their ability to complement the DNA transfer defect of the conjugative F-like plasmid R1-16 lacking a functional P19 protein, the specialized lytic transglycosylase of this type IV secretion system. Heterologous complementation was accomplished using IpgF from the plasmid-encoded type III secretion system of Shigella sonnei and TrbN from the type IV secretion system of the conjugative plasmid RP4. In contrast, neither VirB1 proteins (Agrobacterium tumefaciens, Brucella suis) nor IagB (Salmonella enterica) could functionally replace P19. In vitro, IpgF, IagB, both VirB1 proteins, HP0523 (Helicobacter pylori) and P19 displayed peptidoglycanase activity in zymogram analyses. Using an established test system and a newly developed assay it was shown that IpgF degraded peptidoglycan in solution. IpgF was active only after removal of the chaperonin GroEL, which co-purified with IpgF and inhibited its enzymic activity. A mutant IpgF protein in which the predicted catalytic amino acid, Glu42, was replaced by Gln, was completely inactive. IpgF-catalysed peptidoglycan degradation was optimal at pH 6 and was inhibited by the lytic transglycosylase inhibitors hexa-N-acetylchitohexaose and bulgecin A.
-
The putative lytic transglycosylase VirB1 from Brucella suis interacts with the type IV secretion system core components VirB8, VirB9 and VirB11
More LessVirB1-like proteins are believed to act as lytic transglycosylases, which facilitate the assembly of type IV secretion systems via localized lysis of the peptidoglycan. This paper presents the biochemical analysis of interactions of purified Brucella suis VirB1 with core components of the type IV secretion system. Genes encoding VirB1, VirB8, VirB9, VirB10 and VirB11 were cloned into expression vectors; the affinity-tagged proteins were purified from Escherichia coli, and analyses by gel filtration chromatography showed that they form monomers or homo-multimers. Analysis of protein–protein interactions by affinity precipitation revealed that VirB1 bound to VirB9 and VirB11. The results of bicistron expression experiments followed by gel filtration further supported the VirB1–VirB9 interaction. Peptide array mapping identified regions of VirB1 that interact with VirB8, VirB9 and VirB11 and underscored the importance of the C-terminus, especially for the VirB1–VirB9 interaction. The binding sites were localized on a structure model of VirB1, suggesting that different portions of VirB1 may interact with other VirB proteins during assembly of the type IV secretion machinery.
-
Molecular characterization of the Agrobacterium tumefaciens DNA transfer protein VirB6
More LessThe VirB proteins of Agrobacterium tumefaciens assemble a T-pilus and a type IV secretion (T4S) apparatus for the transfer of DNA and proteins to plant cells. VirB6 is essential for DNA transfer and is a polytopic integral membrane protein with at least four membrane-spanning domains. VirB6 is postulated to function in T-pilus biogenesis and to be a component of the T4S apparatus. To identify amino acids required for VirB6 function, random mutations were introduced into virB6, and mutants that failed to complement a deletion in virB6 in tumour formation assays were isolated. Twenty-one non-functional mutants were identified, eleven of which had a point mutation that led to a substitution in a single amino acid. Characterization of the mutants indicated that the N-terminal large periplasmic domain and the transmembrane domain TM3 are required for VirB6 function. TM3 has an unusual sequence feature in that it is rich in bulky hydrophobic amino acids. This feature is found conserved in the VirB6 family of proteins. Studies on the effect of VirB6 on other VirB proteins showed that the octopine Ti-plasmid VirB6, unlike its nopaline Ti-plasmid counterpart, does not affect accumulation of VirB3 and VirB5, but has a strong negative effect on the accumulation of the VirB7-VirB7 dimer. Using indirect immunofluorescence microscopy the authors recently demonstrated that VirB6 localizes to a cell pole in a VirB-dependent manner. Mutations identified in the present study did not affect polar localization of the protein or the formation of the VirB7-VirB7 dimer. A VirB6-GFP fusion that contained the entire VirB6 ORF did not localize to a cell pole in either the presence or the absence of the other VirB proteins. IMF studies using dual labelling demonstrated that VirB6 colocalizes with VirB3 and VirB9, and not with VirB4, VirB5 and VirB11. These results support the conclusion that VirB6 is a structural component of the T4S apparatus.
-
Conjugative plasmid DNA transfer in Helicobacter pylori mediated by chromosomally encoded relaxase and TraG-like proteins
More LessOne of the striking characteristics of Helicobacter pylori is the extensive genetic diversity among clinical isolates. This diversity has been attributed to an elevated mutation rate, impaired DNA repair, DNA transfer and frequent recombination events. Plasmids have also been identified in H. pylori but it remained unknown whether conjugation can contribute to DNA transfer between clinical isolates. To examine whether H. pylori possesses intrinsic capability for conjugative plasmid transfer, shuttle vectors were introduced into H. pylori containing an oriT sequence of the conjugative IncPα plasmid RP4 but no mobilization (mob) genes. It was shown that these vectors could stably replicate and be mobilized among clinical H. pylori strains. It was also demonstrated that traG and relaxase (rlx) homologues carried on the H. pylori chromosome were important for plasmid transfer. Primer extension studies and mutagenesis further confirmed that the relaxase homologue rlx1 in H. pylori encodes a functional enzyme capable of acting on the RP4 oriT. Furthermore, the findings of this study indicate that traG and rlx1 act independently of the previously described type IV secretion systems, including that encoded by the cag pathogenicity island and the comB transformation apparatus, in mediating conjugative plasmid DNA transfer between H. pylori strains.
-
Functional interactions between type IV secretion systems involved in DNA transfer and virulence
This paper reports an analysis of the functional interactions between type IV secretion systems (T4SS) that are part of the conjugative machinery for horizontal DNA transfer (cT4SS), and T4SS involved in bacterial pathogenicity (pT4SS). The authors' previous work showed that a conjugative coupling protein (T4CP) interacts with the VirB10-type component of the T4SS in order to recruit the protein–DNA complex to the transporter for conjugative DNA transfer. This study now shows by two-hybrid analysis that conjugative T4CPs also interact with the VirB10 element of the pT4SS of Agrobacterium tumefaciens (At), Bartonella tribocorum (Bt) and Brucella suis (Bs). Moreover, the VirB10 component of a cT4SS (protein TrwE of plasmid R388) could be partially substituted by that of a pT4SS (protein TrwE of Bt) for conjugation. This result opens the way for the construction of hybrid T4SS that deliver DNA into animal cells. Interestingly, in the presence of part of the Bs T4SS the R388 T4SS protein levels were decreased and R388 conjugation was strongly inhibited. Complementation assays between the Trw systems of R388 and Bt showed that only individual components from the so-called ‘core complex’ could be exchanged, supporting the concept that this core is the common scaffold for the transport apparatus while the other ‘peripheral components' are largely system-specific.
-
Unsaturated fatty acids are inhibitors of bacterial conjugation
This report describes a high-throughput assay to identify substances that reduce the frequency of conjugation in Gram-negative bacteria. Bacterial conjugation is largely responsible for the spread of multiple antibiotic resistances in human pathogens. Conjugation inhibitors may provide a means to control the spread of antibiotic resistance. An automated conjugation assay was developed that used plasmid R388 and a laboratory strain of Escherichia coli as a model system, and bioluminescence as a reporter for conjugation activity. Frequencies of conjugation could be measured continuously in real time by the amount of light produced, and thus the effects of inhibitory compounds could be determined quantitatively. A control assay, run in parallel, allowed elimination of compounds affecting cell growth, plasmid stability or gene expression. The automated conjugation assay was used to screen a database of more than 12 000 microbial extracts known to contain a wide variety of bioactive compounds (the NatChem library). The initial hit rate was 1·4 %. From these, 48 extracts containing active compounds and representing a variety of organisms and extraction conditions were subjected to fractionation (24 fractions per extract). The 52 most active fractions were subjected to a secondary analysis to determine the range of plasmid inhibition. Plasmids R388, R1 and RP4 were used as representatives of a variety of plasmid transfer systems. Only one fraction (of complex composition) affected transfer of all three plasmids, while four other fractions were active against two of them. Two separate compounds were identified from these fractions: linoleic acid and dehydrocrepenynic acid. Downstream analysis showed that the chemical class of unsaturated fatty acids act as true inhibitors of conjugation.
-
The mating pair stabilization protein, TraN, of the F plasmid is an outer-membrane protein with two regions that are important for its function in conjugation
F plasmid TraN (602 aa, processed to 584 aa with 22 conserved cysteines), which is essential for F plasmid conjugation, is an outer-membrane protein involved in mating pair stabilization (MPS). Unlike R100 TraN, F TraN requires OmpA in the recipient cell for efficient MPS. The authors have identified three external loops (aa 172–187, 212–220 and 281–284) in the highly divergent region from aa 164 to aa 333 as candidates for interaction with OmpA. These loops were identified using both site-directed and random TnphoA/in mutagenesis to insert epitopes (31-aa or c-myc) into TraN and monitor their effect on sensitivity to external proteases and on mating ability. TraN is a hallmark protein of F-type IV secretion systems as demonstrated by blast searches of the databases. The C-terminal region is highly conserved and contains five of the six completely conserved cysteines. Mutation of these residues to serine demonstrated their importance in TraN function. TraN appears to require both intra- and intermolecular disulfide bond formation for its stability and structure as demonstrated by its instability in a dsbA mutant and its aberrant migration on SDS-polyacrylamide gels under non-reducing conditions or by cross-linking with bis(sulfosuccinimidyl)suberate (BS3). Thus, F TraN appears to have two domains: the N-terminal region is involved in OmpA interaction with OmpA during MPS; and the C-terminal region, which is rich in conserved cysteine residues, is essential for conjugation.
-
Fluorescence assays for F-pili and their application
More LessConjugative pili are extracellular filaments elaborated by Gram-negative bacteria expressing certain type IV secretion systems. They are required at the earliest stages of conjugal DNA transfer to establish specific and secure cell–cell contacts. Conjugative pili also serve as adsorption organelles for both RNA and DNA bacteriophages. Beyond these facts, the structure, formation and function of these filaments are poorly understood. This paper describes a rapid, quantitative assay for F-pili encoded by the F plasmid type IV secretion system. The assay is based on the specific lateral adsorption of icosahedral RNA bacteriophage R17 by F-pili. Bacteriophage particles conjugated with a fluorescent dye, Alexa 488, and bound to F-pili defined filaments visible by immunofluorescence microscopy. F-pili attached to F+ cells and free F-pili were both visible by this method. For quantification, cell-bound bacteriophage were separated from free bacteriophage particles by sedimentation and released by suspending cell pellets in 0·1 % SDS. Fluorescence in cell-free supernatant fractions was measured by fluorometry. The authors present a characterization of this assay and its application to F-pilus formation by cells carrying mutations in the gene for the F-pilus subunit F-pilin. Each mutation introduced a cysteine, which F-pilin normally lacks, at a different position in its primary structure. Cysteine residues in the N-terminal domain I abolished filament formation as measured by fluorescent R17 binding. This was confirmed by measurements of DNA donor activity and filamentous DNA bacteriophage infection. With one exception (G53C), cysteines elsewhere in the F-pilin primary structure did not abolish filament formation, although some mutations differentially affected F-pilus functions.
-
Subcellular localization and functional domains of the coupling protein, TraG, from IncHI1 plasmid R27
More LessBacterial conjugation is a horizontal gene transfer event mediated by the type IV secretion system (T4SS) encoded by bacterial plasmids. Within the T4SS, the coupling protein plays an essential role in linking the membrane-associated pore-forming proteins to the cytoplasmic, DNA-processing proteins. TraG is the coupling protein encoded by the incompatibility group HI plasmids. A hallmark feature of the IncHI plasmids is optimal conjugative transfer at 30 °C and an inability to transfer at 37 °C. Transcriptional analysis of the transfer region 1 (Tra1) of R27 has revealed that traG is transcribed in a temperature-dependent manner, with significantly reduced levels of expression at 37 °C as compared to expression at 30 °C. The R27 coupling protein contains nucleoside triphosphate (NTP)-binding domains, the Walker A and Walker B boxes, which are well conserved among this family of proteins. Site-specific mutagenesis within these motifs abrogated the conjugative transfer of R27 into recipient cells. Mutational analysis of the TraG periplasmic-spanning residues, in conjunction with bacterial two-hybrid and immunoprecipitation analysis, determined that this region is essential for a successful interaction with the T4SS protein TrhB. Further characterization of TraG by immunofluorescence studies revealed that the R27 coupling protein forms membrane-associated fluorescent foci independent of R27 conjugative proteins. These foci were found at discrete positions within the cell periphery. These results allow the definition of domains within TraG that are involved in conjugative transfer, and determination of the cellular location of the R27 coupling protein.
-
Transcriptional organization of the temperature-sensitive transfer system from the IncHI1 plasmid R27
More LessOne of the characteristic features of IncHI1 plasmids is a thermosensitive process of conjugation, which is optimal between 22 °C and 30 °C but inhibited at 37 °C. R27, the prototypical IncHI1 plasmid, contains transfer genes clustered in two regions of the plasmid, Tra1 and Tra2. In the present study, transcriptional analyses of the tra genes were undertaken at both 30 °C and 37 °C. Screening of 38 tra genes showed that tra genes are transcriptionally linked in six operons, three in each Tra region. RT-PCR analysis showed that gene expression was reduced at 37 °C relative to that observed at 30 °C. The transcription start sites of the six transcripts were identified, promoters and upstream regions were cloned, and transcription was tested at both temperatures. In cells grown at 37 °C, in the presence of R27, the promoters were inhibited, except for promoters of the H operon and AN operon. Conditions that influenced DNA topology, such as osmolarity, anaerobiosis, quorum sensing and acidity, showed no significant influence on transfer frequency. These results should facilitate future understanding of the basis of temperature-sensitive transfer in this large conjugative plasmid.
- Top
-
- Cell And Developmental Biology
-
-
Surface ultrastructure and elasticity in growing tips and mature regions of Aspergillus hyphae describe wall maturation
More LessThis study reports the first direct, high-resolution physical and structural evidence of wall changes during hyphal tip growth, visualized by atomic force microscopy (AFM) in Aspergillus nidulans. Images from AFM and cryo-scanning electron microscopy provided comparable information, but AFM was also able to image and physically probe living cells. AFM images showed changes in the surface ultrastructure of A. nidulans hyphae, from newly deposited walls at hyphal tips to fully mature walls, as well as additional changes at young branches arising from mature walls. Surface architecture during wall maturation correlated with changes in the relative viscoelasticity (compliance per unit applied force) of walls measured by force spectroscopy (FS) in growing A. nidulans hyphae. Growing tips showed greater viscoelasticity than mature walls, despite equal support from turgor. Branch tips had comparable viscoelasticity to hyphal tips, unlike the mature wall from which they grew. FS also revealed differences in surface hydrophilicity between newly deposited and mature walls, with the tips being more hydrophilic. The hydrophilicity of young branch tips was similar to that of hyphal tips, and different from that of mature walls. Taken together, AFM images and FS data suggest that the A. nidulans wall matures following deposition at the hyphal tip.
-
A death round affecting a young compartmentalized mycelium precedes aerial mycelium dismantling in confluent surface cultures of Streptomyces antibioticus
More LessDevelopment-associated cell-death processes were investigated in detail during the growth and differentiation of Streptomyces antibioticus ATCC 11891 on confluent surface cultures, by using fluorescent viability probes, membrane and activity fluorescence indicators, and electron microscopy analysis. A previously unsuspected complexity was revealed, namely the presence of a very young compartmentalized mycelium that dies following an orderly pattern, leaving alternating live and dead segments in the same hypha. This death round is followed by the growth of a second mycelium which develops rapidly from the live segments of the first mycelium and dies massively in a second death round, which extends over the phases of aerial mycelium formation and sporulation.
-
The trans-acting flagellar regulatory proteins, FliX and FlbD, play a central role in linking flagellar biogenesis and cytokinesis in Caulobacter crescentus
More LessThe FliX/FlbD-dependent temporal transcription of late flagellar genes in Caulobacter crescentus requires the assembly of an early, class II-encoded flagellar structure. Class II flagellar-mutant strains exhibit a delay in the completion of cell division, with the accumulation of filamentous cells in culture. It is shown here that this cell-division defect is attributable to an arrest in the final stages of cell separation. Normal cell morphology could be restored in class II mutants by gain-of-function alleles of FliX or FlbD, suggesting that the timely completion of cell division requires these trans-acting factors. In synchronized cultures, inhibition of cell division by depleting FtsZ resulted in normal initial expression of the late, FlbD-dependent fliK gene; however, the cell cycle-regulated cessation of transcription was delayed, indicating that cell division may be required to negatively regulate FlbD activity. Interestingly, prolonged depletion of FtsZ resulted in an eventual loss of FlbD activity that could be bypassed by a constitutive mutant of FlbD, but not of FliX, suggesting the possible existence of a second cell cycle-dependent pathway for FlbD activation.
- Top
-
- Biochemistry And Molecular Biology
-
-
The LuxR receptor: the sites of interaction with quorum-sensing signals and inhibitors
More LessThe function of LuxR homologues as quorum sensors is mediated by the binding of N-acyl-l-homoserine lactone (AHL) signal molecules to the N-terminal receptor site of the proteins. In this study, site-directed mutagenesis was carried out of the amino acid residues comprising the receptor site of LuxR from Vibrio fischeri, and the ability of the L42A, L42S, Y62F, W66F, D79N, W94D, V109D, V109T and M135A LuxR mutant proteins to activate green fluorescent protein expression from a PluxI promoter was measured. X-ray crystallographic studies of the LuxR homologue TraR indicated that residues Y53 and W57 form hydrogen bonds to the 1-carbonyl group and the ring carbonyl group, respectively, of the cognate AHL signal. Based on the activity and signal specificity of the LuxR mutant proteins, and on molecular modelling, a model is suggested in which Y62 (corresponding to Y53 in TraR) forms a hydrogen bond with the ring carbonyl group rather than the 1-carbonyl group, while W66 (corresponding to W57 in TraR) forms a hydrogen bond to the 1-carbonyl group. This flips the position of the acyl side chain in the LuxR/signal molecule complex compared to the TraR/signal molecule complex. Halogenated furanones from the marine alga Delisea pulchra and the synthetic signal analogue N-(sulfanylacetyl)-l-homoserine lactone can block quorum sensing. The LuxR mutant proteins were insensitive to inhibition by N-(propylsulfanylacetyl)-l-homoserine lactone. In contrast, the mutations had only a minor effect on the sensitivity of the proteins to halogenated furanones, and the data strongly suggest that these compounds do not compete in a ‘classic’ way with N-3-oxohexanoyl-l-homoserine lactone for the binding site. Based on modelling and experimental data it is suggested that these compounds bind in a non-agonist fashion.
-
Identification of a novel two-component system SenS/SenR modulating the production of the catalase-peroxidase CpeB and the haem-binding protein HbpS in Streptomyces reticuli
More LessThe Gram-positive soil bacterium and cellulose degrader Streptomyces reticuli synthesizes the mycelium-associated enzyme CpeB, which displays haem-dependent catalase and peroxidase activity, as well as haem-independent manganese-peroxidase activity. The expression of the furS–cpeB operon depends on the redox regulator FurS and the presence of the haem-binding protein HbpS. Upstream of hbpS, the neighbouring senS and senR genes were identified. SenS is a sensor histidine kinase with five predicted N-terminally located transmembrane domains. SenR is the corresponding response regulator with a C-terminal DNA-binding motif. Comparative transcriptional and biochemical studies with a designed S. reticuli senS/senR chromosomal disruption mutant and a set of constructed Streptomyces lividans transformants showed that the presence of the novel two-component system SenS/SenR negatively modulates the expression of the furS–cpeB operon and the hbpS gene. The presence of SenS/SenR enhances considerably the resistance of S. reticuli to haemin and the redox-cycling compound plumbagin, suggesting that this system could participate directly or indirectly in the sensing of redox changes. Epitope-tagged HbpS (obtained from an Escherichia coli transformant) as well as the native S. reticuli HbpS interact in vitro specifically with the purified SenS fusion protein. On the basis of these findings, together with data deduced from the S. reticuli hbpS mutant strain, HbpS is suggested to act as an accessory protein that communicates with the sensor protein to modulate the corresponding regulatory cascade. Interestingly, close and distant homologues, respectively, of the SenS/SenR system are encoded within the Streptomyces coelicolor A3(2) and Streptomyces avermitilis genomes, but not within other known bacterial genomes. Hence the SenS/SenR system appears to be confined to streptomycetes.
-
The role of two CbbRs in the transcriptional regulation of three ribulose-1,5-bisphosphate carboxylase/oxygenase genes in Hydrogenovibrio marinus strain MH-110
More LessHydrogenovibrio marinus MH-110 possesses three different sets of genes for ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO): two form I (cbbLS-1 and cbbLS-2) and one form II (cbbM). We have previously shown that the expression of these RubisCO genes is dependent on the ambient CO2 concentration. LysR-type transcriptional regulators, designated CbbR1 and CbbRm, are encoded upstream of the cbbLS-1 and cbbM genes, respectively. In this study, we revealed by gel shift assay that CbbR1 and CbbRm bind with higher affinity to the promoter regions of cbbLS-1 and cbbM, respectively, and with lower affinity to the other RubisCO gene promoters. The expression patterns of the three RubisCOs in the cbbR1 and the cbbRm gene mutants showed that CbbR1 and CbbRm were required to activate the expression of cbbLS-1 and cbbM, respectively, and that neither CbbR1 nor CbbRm was required for the expression of cbbLS-2. The expression of cbbLS-1 was significantly enhanced under high-CO2 conditions in the cbbRm mutant, in which the expression of cbbM was decreased. Although cbbLS-2 was not expressed under high-CO2 conditions in the wild-type strain or the single cbbR mutants, the expression of cbbLS-2 was observed in the cbbR1 cbbRm double mutant, in which the expression of both cbbLS-1 and cbbM was decreased. These results indicate that there is an interactive regulation among the three RubisCO genes.
-
ESCRT-I components of the endocytic machinery are required for Rim101-dependent ambient pH regulation in the yeast Yarrowia lipolytica
More LessAmbient pH signalling involves a cascade of conserved Rim or Pal products in ascomycetous yeasts or filamentous fungi, respectively. Insertional mutagenesis in the yeast Yarrowia lipolytica identified two components of the endosome-associated ESCRT-I complex involved in multivesicular body (MVB) vesicle formation, YlVps28p and YlVps23p. They were shown to be required at alkaline pH, like Rim factors, for transcriptional activation of alkaline-induced genes and repression of acid-induced genes. The constitutively active YlRIM101-1119 allele, which suppresses the pH-signalling defects of Ylrim mutations, also suppresses Ylvps defects in pH response, but not in endocytosis. The contribution of the ESCRT-III component Snf7p could not be assessed due to the essential nature of this component in Y. lipolytica. Unlike Rim factors, YlVps4p, a component of the MVB pathway acting downstream from ESCRT complexes, seems not to be required for the alkaline response. In Y. lipolytica, all vps mutations including those affecting YlVPS4, affected growth at acidic pH, a feature not exhibited by Ylrim mutations. These results suggest that Rim and Vps pathways cooperate in ambient pH signalling and that this relation is conserved across the full range of hemiascomycetous yeasts.
-
Volumes and issues
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)
Most Read This Month
