1887

Abstract

Bacterial conjugation is a horizontal gene transfer event mediated by the type IV secretion system (T4SS) encoded by bacterial plasmids. Within the T4SS, the coupling protein plays an essential role in linking the membrane-associated pore-forming proteins to the cytoplasmic, DNA-processing proteins. TraG is the coupling protein encoded by the incompatibility group HI plasmids. A hallmark feature of the IncHI plasmids is optimal conjugative transfer at 30 °C and an inability to transfer at 37 °C. Transcriptional analysis of the transfer region 1 (Tra1) of R27 has revealed that is transcribed in a temperature-dependent manner, with significantly reduced levels of expression at 37 °C as compared to expression at 30 °C. The R27 coupling protein contains nucleoside triphosphate (NTP)-binding domains, the Walker A and Walker B boxes, which are well conserved among this family of proteins. Site-specific mutagenesis within these motifs abrogated the conjugative transfer of R27 into recipient cells. Mutational analysis of the TraG periplasmic-spanning residues, in conjunction with bacterial two-hybrid and immunoprecipitation analysis, determined that this region is essential for a successful interaction with the T4SS protein TrhB. Further characterization of TraG by immunofluorescence studies revealed that the R27 coupling protein forms membrane-associated fluorescent foci independent of R27 conjugative proteins. These foci were found at discrete positions within the cell periphery. These results allow the definition of domains within TraG that are involved in conjugative transfer, and determination of the cellular location of the R27 coupling protein.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28255-0
2005-11-01
2020-04-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/11/3549.html?itemId=/content/journal/micro/10.1099/mic.0.28255-0&mimeType=html&fmt=ahah

References

  1. Alonso G., Baptista K., Ngo T., Taylor D. E. 2005; Transcriptional organization of the temperature-sensitive transfer system from the IncHI1 plasmid R27. Microbiology151:3563–3573[CrossRef]
    [Google Scholar]
  2. Atmakuri K., Cascales E., Christie P. J. 2004; Energetic components VirD4, VirB11 and VirB4 mediate early DNA transfer reactions required for bacterial type IV secretion. Mol Microbiol54:1199–1211[CrossRef]
    [Google Scholar]
  3. Balzer D., Pansegrau W., Lanka E. 1994; Essential motifs of relaxase (TraI) and TraG proteins involved in conjugative transfer of plasmid RP4. J Bacteriol176:4285–4295
    [Google Scholar]
  4. Bath J., Wu L. J., Errington J., Wang J. C. 2000; Role of Bacillus subtilis SpoIIIE in DNA transport across the mother cell-prespore division septum. Science290:995–997[CrossRef]
    [Google Scholar]
  5. Bordo D., Argos P. 1991; Suggestions for “safe” residue substitutions in site-directed mutagenesis. J Mol Biol217:721–729[CrossRef]
    [Google Scholar]
  6. Cabezon E., Lanka E., de la Cruz F. 1994; Requirements for mobilization of plasmids RSF1010 and ColE1 by the IncW plasmid R388: trwB and RP4 traG are interchangeable. J Bacteriol176:4455–4458
    [Google Scholar]
  7. Cabezon E., Sastre J. I., de la Cruz F. 1997; Genetic evidence of a coupling role for the TraG protein family in bacterial conjugation. Mol Gen Genet254:400–406[CrossRef]
    [Google Scholar]
  8. Cascales E., Christie P. J. 2003; The versatile bacterial type IV secretion systems. Nat Rev Microbiol1:137–149[CrossRef]
    [Google Scholar]
  9. Cascales E., Christie P. J. 2004a; Agrobacterium VirB10, an ATP energy sensor required for type IV secretion. Proc Natl Acad Sci U S A101:17228–17233[CrossRef]
    [Google Scholar]
  10. Cascales E., Christie P. J. 2004b; Definition of a bacterial type IV secretion pathway for a DNA substrate. Science304:1170–1173[CrossRef]
    [Google Scholar]
  11. Christie P. J., Vogel J. P. 2000; Bacterial type IV secretion: conjugation systems adapted to deliver effector molecules to host cells. Trends Microbiol8:354–360[CrossRef]
    [Google Scholar]
  12. Das A., Xie Y. H. 1998; Construction of transposon Tn 3phoA : its application in defining the membrane topology of the Agrobacterium tumefaciens DNA transfer proteins. Mol Microbiol27:405–414[CrossRef]
    [Google Scholar]
  13. Errington J., Bath J., Wu L. J. 2001; DNA transport in bacteria. Nat Rev Mol Cell Biol2:538–545[CrossRef]
    [Google Scholar]
  14. Forns N., Banos R. C., Balsalobre C., Juarez A., Madrid C. 2005; Temperature-dependent conjugative transfer of R27: role of chromosome- and plasmid-encoded Hha and H-NS proteins. J Bacteriol187:3950–3959[CrossRef]
    [Google Scholar]
  15. Gilmour M. W., Taylor D. E. 2004; A subassembly of R27-encoded transfer proteins is dependent on TrhC nucleoside triphosphate-binding motifs for function but not formation. J Bacteriol186:1606–1613[CrossRef]
    [Google Scholar]
  16. Gilmour M. W., Lawley T. D., Rooker M. M., Newnham P. J., Taylor D. E. 2001; Cellular location and temperature-dependent assembly of IncHI1 plasmid R27-encoded TrhC-associated conjugative transfer protein complexes. Mol Microbiol42:705–715
    [Google Scholar]
  17. Gilmour M. W., Gunton J. E., Lawley T. D., Taylor D. E. 2003; Interaction between the IncHI1 plasmid R27 coupling protein and type IV secretion system: TraG associates with the coiled-coil mating pair formation protein TrhB. Mol Microbiol49:105–116[CrossRef]
    [Google Scholar]
  18. Gomis-Ruth F. X., Moncalian G., Perez-Luque R., Gonzalez A., Cabezon E., de la Cruz F., Coll M. 2001; The bacterial conjugation protein TrwB resembles ring helicases and F1-ATPase. Nature409:637–641[CrossRef]
    [Google Scholar]
  19. Grahn A. M., Haase J., Bamford D. H., Lanka E. 2000; Components of the RP4 conjugative transfer apparatus form an envelope structure bridging inner and outer membranes of donor cells: implications for related macromolecule transport systems. J Bacteriol182:1564–1574[CrossRef]
    [Google Scholar]
  20. Hamilton C. M., Lee H., Li P. L., Cook D. M., Piper K. R., von Bodman S. B., Lanka E., Ream W., Farrand S. K. 2000; TraG from RP4 and TraG and VirD4 from Ti plasmids confer relaxosome specificity to the conjugal transfer system of pTiC58. J Bacteriol182:1541–1548[CrossRef]
    [Google Scholar]
  21. Hormaeche I., Alkorta I., Moro F., Valpuesta J. M., Goni F. M., De La Cruz F. 2002; Purification and properties of TrwB, a hexameric, ATP-binding integral membrane protein essential for R388 plasmid conjugation. J Biol Chem277:46456–46462[CrossRef]
    [Google Scholar]
  22. Jakubowski S. J., Krishnamoorthy V., Cascales E., Christie P. J. 2004; Agrobacterium tumefaciens VirB6 domains direct the ordered export of a DNA substrate through a type IV secretion. Syst J Mol Biol341:961–977[CrossRef]
    [Google Scholar]
  23. Judd P. K., Kumar R. B., Das A. 2005; The type IV secretion apparatus protein VirB6 of Agrobacterium tumefaciens localizes to a cell pole. Mol Microbiol55:115–124
    [Google Scholar]
  24. Karimova G., Pidoux J., Ullmann A., Ladant D. 1998; A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc Natl Acad Sci U S A95:5752–5756[CrossRef]
    [Google Scholar]
  25. Kumar R. B., Das A. 2002; Polar location and functional domains of the Agrobacterium tumefaciens DNA transfer protein VirD4. Mol Microbiol43:1523–1532[CrossRef]
    [Google Scholar]
  26. Lanka E., Wilkins B. M. 1995; DNA processing reactions in bacterial conjugation. Annu Rev Biochem64:141–169[CrossRef]
    [Google Scholar]
  27. Lawley T. D., Taylor D. E. 2003; Characterization of the double-partitioning modules of R27: correlating plasmid stability with plasmid localization. J Bacteriol185:3060–3067[CrossRef]
    [Google Scholar]
  28. Lawley T. D., Gilmour M. W., Gunton J. E., Standeven L. J., Taylor D. E. 2002; Functional and mutational analysis of conjugative transfer region 1 (Tra1) from the IncHI1 plasmid R27. J Bacteriol184:2173–2180[CrossRef]
    [Google Scholar]
  29. Lawley T. D., Klimke W. A., Gubbins M. J., Frost L. S. 2003; F factor conjugation is a true type IV secretion system. FEMS Microbiol Lett224:1–15[CrossRef]
    [Google Scholar]
  30. Lee M. H., Kosuk N., Bailey J., Traxler B., Manoil C. 1999; Analysis of F factor TraD membrane topology by use of gene fusions and trypsin-sensitive insertions. J Bacteriol181:6108–6113
    [Google Scholar]
  31. Llosa M., de la Cruz F. 2005; Bacterial conjugation: a potential tool for genomic engineering. Res Microbiol156:1–6[CrossRef]
    [Google Scholar]
  32. Llosa M., Zunzunegui S., de la Cruz F. 2003; Conjugative coupling proteins interact with cognate and heterologous VirB10-like proteins while exhibiting specificity for cognate relaxosomes. Proc Natl Acad Sci U S A100:10465–10470[CrossRef]
    [Google Scholar]
  33. Maher D., Sherburne R., Taylor D. E. 1991; Bacteriophages for incompatibility group H plasmids: morphological and growth characteristics. Plasmid26:141–146[CrossRef]
    [Google Scholar]
  34. Maher D., Sherburne R., Taylor D. E. 1993; H-pilus assembly kinetics determined by electron microscopy. J Bacteriol175:2175–2183
    [Google Scholar]
  35. Miller J. H. 1972; Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  36. Moncalian G., Cabezon E., Alkorta I., Valle M., Moro F., Valpuesta J. M., Goni F. M., de La Cruz F. 1999; Characterization of ATP and DNA binding activities of TrwB, the coupling protein essential in plasmid R388 conjugation. J Biol Chem274:36117–36124[CrossRef]
    [Google Scholar]
  37. Okamoto S., Toyoda-Yamamoto A., Ito K., Takebe I., Machida Y. 1991; Localization and orientation of the VirD4 protein of Agrobacterium tumefaciens in the cell membrane. Mol Gen Genet228:24–32
    [Google Scholar]
  38. Pansegrau W., Balzer D., Kruft V., Lurz R., Lanka E. 1990; In vitro assembly of relaxosomes at the transfer origin of plasmid RP4. Proc Natl Acad Sci U S A87:6555–6559[CrossRef]
    [Google Scholar]
  39. Schneider E., Hunke S. 1998; ATP-binding-cassette (ABC) transport systems: functional and structural aspects of the ATP-hydrolyzing subunits/domains. FEMS Microbiol Rev22:1–20[CrossRef]
    [Google Scholar]
  40. Schroder G., Lanka E. 2003; TraG-like proteins of type IV secretion systems: functional dissection of the multiple activities of TraG (RP4) and TrwB (R388. J Bacteriol185:4371–4381[CrossRef]
    [Google Scholar]
  41. Schroder G., Lanka E. 2005; The mating pair formation system of conjugative plasmids – a versatile secretion machinery for transfer of proteins and DNA. Plasmid54:1–25[CrossRef]
    [Google Scholar]
  42. Schroder G., Krause S., Zechner E. L., Traxler B., Yeo H. J., Lurz R., Waksman G., Lanka E. 2002; TraG-like proteins of DNA transfer systems and of the Helicobacter pylori type IV secretion system: inner membrane gate for exported substrates?. J Bacteriol184:2767–2779[CrossRef]
    [Google Scholar]
  43. Sherburne C. K., Lawley T. D., Gilmour M. W., Blattner F. R., Burland V., Grotbeck E., Rose D. J., Taylor D. E. 2000; The complete DNA sequence and analysis of R27, a large IncHI plasmid from Salmonella typhi that is temperature sensitive for transfer. Nucleic Acids Res28:2177–2186[CrossRef]
    [Google Scholar]
  44. Strack B., Lessl M., Calendar R., Lanka E. 1992; A common sequence motif, -E-G-Y-A-T-A-, identified within the primase domains of plasmid-encoded I- and P-type DNA primases and the alpha protein of the Escherichia coli satellite phage P4. J Biol Chem267:13062–13072
    [Google Scholar]
  45. Tato I., Zunzunegui S., de la Cruz F., Cabezon E. 2005; TrwB, the coupling protein involved in DNA transport during bacterial conjugation, is a DNA-dependent ATPase. Proc Natl Acad Sci U S A102:8156–8161[CrossRef]
    [Google Scholar]
  46. Taylor D. E. 1983; Transfer-defective and tetracycline-sensitive mutants of the incompatibility group HI plasmid R27 generated by insertion of transposon 7. Plasmid9:227–239[CrossRef]
    [Google Scholar]
  47. Taylor D. E., Levine J. G. 1980; Studies of temperature-sensitive transfer and maintenance of H incompatibility group plasmids. J Gen Microbiol116:475–484
    [Google Scholar]
  48. Yu D., Ellis H. M., Lee E. C., Jenkins N. A., Copeland N. G., Court D. L. 2000; An efficient recombination system for chromosome engineering in Escherichia coli . Proc Natl Acad Sci U S A97:5978–5983[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28255-0
Loading
/content/journal/micro/10.1099/mic.0.28255-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error