1887

Abstract

In the microbial competition observed in enhanced biological phosphorus removal (EBPR) systems, an undesirable group of micro-organisms known as glycogen-accumulating organisms (GAOs) compete for carbon in the anaerobic period with the desired polyphosphate-accumulating organisms (PAOs). Some studies have suggested that a propionate carbon source provides PAOs with a competitive advantage over GAOs in EBPR systems; however, the metabolism of GAOs with this carbon source has not been previously investigated. In this study, GAOs were enriched in a laboratory-scale bioreactor with propionate as the sole carbon source, in an effort to better understand their biochemical processes. Based on comprehensive solid-, liquid- and gas-phase chemical analytical data from the bioreactor, a metabolic model was proposed for the metabolism of propionate by GAOs. The model adequately described the anaerobic stoichiometry observed through chemical analysis, and can be a valuable tool for further investigation of the competition between PAOs and GAOs, and for the optimization of the EBPR process. A group of Alphaproteobacteria dominated the biomass (96 % of Bacteria) from this bioreactor, while post-fluorescence hybridization (FISH) chemical staining confirmed that these Alphaproteobacteria produced poly--hydroxyalkanoates (PHAs) anaerobically and utilized them aerobically, demonstrating that they were putative GAOs. Some of the Alphaproteobacteria were related to (16 % of Bacteria), but the specific identity of many could not be determined by FISH. Further investigation into the identity of other GAOs is necessary.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28065-0
2006-09-01
2019-11-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/9/2767.html?itemId=/content/journal/micro/10.1099/mic.0.28065-0&mimeType=html&fmt=ahah

References

  1. Amann, R. I. ( 1995; ). In situ identification of microorganisms by whole cell hybridization with rRNA-targeted nucleic acid probes. In Molecular Microbial Ecology Manual, pp. 1–15. Edited by A. D. L. Akkermans, J. D. van Elsas & F. J. de Bruijn. Dordrecht, Holland: Kluwer Academic Publications.
  2. Amann, R. I., Binder, B. J., Olson, R. J., Chisholm, S. W., Devereux, R. & Stahl, D. A. ( 1990; ). Combination of 16S ribosomal-RNA-targeted oligonucleotide probes with flow-cytometry for analyzing mixed microbial-populations. Appl Environ Microbiol 56, 1919–1925.
    [Google Scholar]
  3. American Public Health Association, American Water Works Association & Water Pollution Control Federation (APHA, AWWA & WPCF) ( 1995; ). Standard Methods for the Examination of Water and Wastewater, 19th edn. Baltimore: Port City Press.
  4. Beer, M., Seviour, E. M., Kong, Y., Cunningham, M., Blackall, L. L. & Seviour, R. J. ( 2002; ). Phylogeny of the filamentous bacterium Eikelboom Type 1851, and design and application of a 16S rRNA targeted oligonucleotide probe for its fluorescence in situ identification in activated sludge. FEMS Microbiol Lett 207, 179–183.[CrossRef]
    [Google Scholar]
  5. Beer, M., Kong, Y. H. & Seviour, R. J. ( 2004; ). Are some putative glycogen accumulating organisms (GAO) in anaerobic : aerobic activated sludge systems members of the alpha-Proteobacteria? Microbiology 150, 2267–2275.[CrossRef]
    [Google Scholar]
  6. Bond, P. L., Keller, J. & Blackall, L. L. ( 1998; ). Characterisation of enhanced biological phosphorus removal activated sludges with dissimilar phosphorus removal performances. Water Sci Technol 37, 567–571.[CrossRef]
    [Google Scholar]
  7. Bouchez, T., Patureau, D., Dabert, P., Wagner, M., Delgenes, J. P. & Moletta, R. ( 2000; ). Successful and unsuccessful bioaugmentation experiments monitored by fluorescent in situ hybridization. Water Sci Technol 41, 61–68.
    [Google Scholar]
  8. Chen, Y., Randall, A. A. & McCue, T. ( 2004; ). The efficiency of enhanced biological phosphorus removal from real wastewater affected by different ratios of acetic to propionic acid. Water Res 38, 27–36.[CrossRef]
    [Google Scholar]
  9. Crocetti, G. R., Hugenholtz, P., Bond, P. L., Schuler, A., Keller, J., Jenkins, D. & Blackall, L. L. ( 2000; ). Identification of polyphosphate-accumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation. Appl Environ Microbiol 66, 1175–1182.[CrossRef]
    [Google Scholar]
  10. Crocetti, G. R., Banfield, J. F., Keller, J., Bond, P. L. & Blackall, L. L. ( 2002; ). Glycogen-accumulating organisms in laboratory-scale and full-scale wastewater treatment processes. Microbiology 148, 3353–3364.
    [Google Scholar]
  11. Daims, H., Bruhl, A., Amann, R., Schleifer, K. H. & Wagner, M. ( 1999; ). The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22, 434–444.[CrossRef]
    [Google Scholar]
  12. Filipe, C. D. M., Daigger, G. T. & Grady, C. P. L. ( 2001a; ). A metabolic model for acetate uptake under anaerobic conditions by glycogen accumulating organisms: stoichiometry, kinetics, and the effect of pH. Biotechnol Bioeng 76, 17–31.[CrossRef]
    [Google Scholar]
  13. Filipe, C. D. M., Daigger, G. T. & Grady, C. P. L. ( 2001b; ). Stoichiometry and kinetics of acetate uptake under anaerobic conditions by an enriched culture of phosphorus-accumulating organisms at different pHs. Biotechnol Bioeng 76, 32–43.[CrossRef]
    [Google Scholar]
  14. Gottschalk, G. ( 1986; ). Bacterial Metabolism, 2nd edn. New York: Springer.
  15. Hesselmann, R. P. X., Werlen, C., Hahn, D., van der Meer, J. R. & Zehnder, A. J. B. ( 1999; ). Enrichment, phylogenetic analysis and detection of a bacterium that performs enhanced biological phosphate removal in activated sludge. Syst Appl Microbiol 22, 454–465.[CrossRef]
    [Google Scholar]
  16. Kong, Y. H., Ong, S. L., Ng, W. J. & Liu, W. T. ( 2002; ). Diversity and distribution of a deeply branched novel proteobacterial group found in anaerobic–aerobic activated sludge processes. Environ Microbiol 4, 753–757.[CrossRef]
    [Google Scholar]
  17. Levantesi, C., Serafim, L. S., Crocetti, G. R., Lemos, P. C., Rossetti, S., Blackall, L. L., Reis, M. A. M. & Tandoi, V. ( 2002; ). Analysis of the microbial community structure and function of a laboratory scale enhanced biological phosphorus removal reactor. Environ Microbiol 4, 559–569.[CrossRef]
    [Google Scholar]
  18. Liu, W. T., Nielsen, A. T., Wu, J. H., Tsai, C. S., Matsuo, Y. & Molin, S. ( 2001; ). In situ identification of polyphosphate- and polyhydroxyalkanoate-accumulating traits for microbial populations in a biological phosphorus removal process. Environ Microbiol 3, 110–122.[CrossRef]
    [Google Scholar]
  19. Manz, W., Amann, R., Ludwig, W., Wagner, M. & Schleifer, K. H. ( 1992; ). Phylogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria – problems and solutions. Syst Appl Microbiol 15, 593–600.[CrossRef]
    [Google Scholar]
  20. Meyer, R. L., Saunders, A. M. & Blackall, L. L. ( 2006; ). Putative glycogen-accumulating organisms belonging to Alphaproteobacteria identified through rRNA-based stable isotope probing. Microbiology 152, 419–429.[CrossRef]
    [Google Scholar]
  21. Neef, A. ( 1997; ). Anwendung der in situ Einzelzell-Identifizierung von Bakterien zur Populationsanalyse in komplexen mikrobiellen Biozönosen. PhD thesis, Technische Universität München.
  22. Nielsen, A. T., Liu, W. T., Filipe, C., Grady, L., Molin, S. & Stahl, D. A. ( 1999; ). Identification of a novel group of bacteria in sludge from a deteriorated biological phosphorus removal reactor. Appl Environ Microbiol 65, 1251–1258.
    [Google Scholar]
  23. Oehmen, A., Yuan, Z., Blackall, L. L. & Keller, J. ( 2004; ). Short-term effects of carbon source on the competition of polyphosphate accumulating organisms and glycogen accumulating organisms. Water Sci Technol 50, 139–144.
    [Google Scholar]
  24. Oehmen, A., Yuan, Z. G., Blackall, L. L. & Keller, J. ( 2005a; ). Comparison of acetate and propionate uptake by polyphosphate accumulating organisms and glycogen accumulating organisms. Biotechnol Bioeng 91, 162–168.[CrossRef]
    [Google Scholar]
  25. Oehmen, A., Zeng, R. J., Yuan, Z. G. & Keller, J. ( 2005b; ). Anaerobic metabolism of propionate by polyphosphate-accumulating organisms in enhanced biological phosphorus removal systems. Biotechnol Bioeng 91, 43–53.[CrossRef]
    [Google Scholar]
  26. Oehmen, A., Saunders, A. M., Vives, M. T., Yuan, Z. & Keller, J. ( 2006; ). Competition between polyphosphate and glycogen accumulating organisms in enhanced biological phosphorus removal systems with acetate and propionate as carbon sources. J Biotechnol 123, 22–32.[CrossRef]
    [Google Scholar]
  27. Onda, S., Hiraishi, A., Matsuo, Y. & Takii, S. ( 2002; ). Polyphasic approaches to the identification of predominant polyphosphate-accumulating organisms in a laboratory-scale anaerobic/aerobic activated sludge system. J Gen Appl Microbiol 48, 43–54.[CrossRef]
    [Google Scholar]
  28. Ostle, A. G. & Holt, J. G. ( 1982; ). Nile blue A as a fluorescent stain for poly-beta-hydroxybutyrate. Appl Environ Microbiol 44, 238–241.
    [Google Scholar]
  29. Pijuan, M., Saunders, A. M., Guisasola, A., Baeza, J. A., Casas, C. & Blackall, L. L. ( 2004; ). Enhanced biological phosphorus removal in a sequencing batch reactor using propionate as the sole carbon source. Biotechnol Bioeng 85, 56–67.[CrossRef]
    [Google Scholar]
  30. Pratt, S., Yuan, Z., Gapes, D., Dorigo, M., Zeng, R. J. & Keller, J. ( 2003; ). Development of a novel titration and off-gas analysis (TOGA) sensor for study of biological processes in wastewater treatment systems. Biotechnol Bioeng 81, 482–495.[CrossRef]
    [Google Scholar]
  31. Satoh, H., Mino, T. & Matsuo, T. ( 1994; ). Deterioration of enhanced biological phosphorus removal by the domination of microorganisms without polyphosphate accumulation. Water Sci Technol 30, 203–211.
    [Google Scholar]
  32. Saunders, A. M., Oehmen, A., Blackall, L. L., Yuan, Z. & Keller, J. ( 2003; ). The effect of GAOs (glycogen accumulating organisms) on anaerobic carbon requirements in full-scale Australian EBPR (enhanced biological phosphorus removal) plants. Water Sci Technol 47, 37–43.
    [Google Scholar]
  33. Seviour, R. J., Mino, T. & Onuki, M. ( 2003; ). The microbiology of biological phosphorus removal in activated sludge systems. FEMS Microbiol Rev 27, 99–127.[CrossRef]
    [Google Scholar]
  34. Smolders, G. J. F., Vandermeij, J., Vanloosdrecht, M. C. M. & Heijnen, J. J. ( 1994a; ). Stoichiometric model of the aerobic metabolism of the biological phosphorus removal process. Biotechnol Bioeng 44, 837–848.[CrossRef]
    [Google Scholar]
  35. Smolders, G. J. F., Vandermeij, J., Vanloosdrecht, M. C. M. & Heijnen, J. J. ( 1994b; ). Model of the anaerobic metabolism of the biological phosphorus removal process – stoichiometry and pH influence. Biotechnol Bioeng 43, 461–470.[CrossRef]
    [Google Scholar]
  36. Smolders, G. J. F., Vandermeij, J., Vanloosdrecht, M. C. M. & Heijnen, J. J. ( 1995; ). A structured metabolic model for anaerobic and aerobic stoichiometry and kinetics of the biological phosphorus removal process. Biotechnol Bioeng 47, 277–287.[CrossRef]
    [Google Scholar]
  37. Thomas, M., Wright, P., Blackall, L., Urbain, V. & Keller, J. ( 2003; ). Optimisation of Noosa BNR plant to improve performance and reduce operating costs. Water Sci Technol 47, 141–148.
    [Google Scholar]
  38. Voet, D. & Voet, J. G. ( 1990; ). Biochemistry. New York: Wiley.
  39. Whang, L. M. & Park, J. K. ( 2002; ). Competition between polyphosphate- and glycogen-accumulating organisms in biological phosphorus removal systems – effect of temperature. Water Sci Technol 46, 191–194.
    [Google Scholar]
  40. Wong, M. T., Tan, F. M., Ng, W. J. & Liu, W. T. ( 2004; ). Identification and occurrence of tetrad-forming Alphaproteobacteria in anaerobic–aerobic activated sludge processes. Microbiology 150, 3741–3748.[CrossRef]
    [Google Scholar]
  41. Zeng, R., Yuan, Z., van Loosdrecht, M. C. M. & Keller, J. ( 2002; ). Proposed modifications to metabolic model for glycogen-accumulating organisms under anaerobic conditions. Biotechnol Bioeng 80, 277–279.[CrossRef]
    [Google Scholar]
  42. Zeng, R. J., Saunders, A. M., Yuan, Z., Blackall, L. L. & Keller, J. ( 2003a; ). Identification and comparison of aerobic and denitrifying polyphosphate-accumulating organisms. Biotechnol Bioeng 83, 140–148.[CrossRef]
    [Google Scholar]
  43. Zeng, R. J., van Loosdrecht, M. C. M., Yuan, Z. G. & Keller, J. ( 2003b; ). Metabolic model for glycogen-accumulating organisms in anaerobic/aerobic activated sludge systems. Biotechnol Bioeng 81, 92–105.[CrossRef]
    [Google Scholar]
  44. Zilles, J. L., Peccia, J. & Noguera, D. R. ( 2002; ). Microbiology of enhanced biological phosphorus removal in aerated-anoxic orbal processes. Water Environ Res 74, 428–436.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28065-0
Loading
/content/journal/micro/10.1099/mic.0.28065-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error