1887

Abstract

The mitogen-activated protein kinases (MAPKs) play a central role in many host signalling pathways. These signalling proteins are known to be involved in host responses against invasive bacteria including generation of chemotactic and inflammatory cytokines. It was hypothesized that may activate MAPKs, as intestinal infection may induce a clinical and pathological picture of acute colonic inflammation. Infection of Caco-2 cell monolayers (human colonic epithelial cell line) and human colonic tissue with demonstrated increased MAPK activity for ERK 1/2 (p44/42 MAPK), JNK and p38 MAPKs. Kinase activity and phosphorylated forms were increased in infected Caco-2 cells and human colonic explants, suggesting that these pathways are important in inflammatory responses induced by in man.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27979-0
2005-08-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/8/mic1512765.html?itemId=/content/journal/micro/10.1099/mic.0.27979-0&mimeType=html&fmt=ahah

References

  1. Berin, M. C., Darfeuille-Michaud, A., Egan, L. J., Miyamoto, Y. & Kagnoff, M. F. ( 2002; ). Role of EHEC O157:H7 virulence factors in the activation of intestinal epithelial cell NF-κB and MAP kinase pathways and the upregulated expression of interleukin 8. Cell Microbiol 4, 635–648.[CrossRef]
    [Google Scholar]
  2. Black, R. E., Levine, M. M., Clements, M. L., Hughes, T. P. & Blaser, M. J. ( 1988; ). Experimental Campylobacter jejuni infection in humans. J Infect Dis 157, 472–479.[CrossRef]
    [Google Scholar]
  3. Cario, E. I., Rosenberg, I. M., Brandwein, S. L., Beck, P. L., Reinecker, H. C. & Podolsky, D. K. ( 2000; ). Lipopolysaccharide activates distinct signaling pathways in intestinal epithelial cell lines expressing Toll-like receptors. J Immunol 164, 966–972.[CrossRef]
    [Google Scholar]
  4. Coker, A. O., Isokpehi, R. D., Thomas, B. N., Amisu, K. O. & Obi, L. C. ( 2002; ). Human campylobacteriosis in developing countries. Emerg Infect Dis 8, 237–244.[CrossRef]
    [Google Scholar]
  5. Czerucka, D., Dahan, S., Mograbi, B., Rossi, B. & Rampal, P. ( 2001; ). Implication of mitogen-activated protein kinases in T84 cell responses to enteropathogenic Escherichia coli infection. Infect Immun 69, 1298–1305.[CrossRef]
    [Google Scholar]
  6. Dolby, J. M. & Newell, D. G. ( 1986; ). The protection of infant mice from colonization with Campylobacter jejuni by vaccination of the dams. J Hyg 96, 143–151.[CrossRef]
    [Google Scholar]
  7. Everest, P. H., Goossens, H., Butzler, J. P., Lloyd, D., Knutton, S., Ketley, J. M. & Williams, P. H. ( 1992; ). Differentiated Caco-2 cells as a model for enteric invasion by Campylobacter jejuni and C. coli. J Med Microbiol 37, 319–325.[CrossRef]
    [Google Scholar]
  8. Everest, P. H., Goossens, H., Sibbons, P., Lloyd, D. R., Knutton, S., Leece, R., Ketley, J. M. & Williams, P. H. ( 1993; ). Pathological changes in the rabbit ileal loop model caused by Campylobacter jejuni from human colitis. J Med Microbiol 38, 316–321.[CrossRef]
    [Google Scholar]
  9. Foletta, V. C., Segal, D. H. & Cohen, D. R. ( 1998; ). Transcriptional regulation in the immune system: all roads lead to AP-1. J Leukoc Biol 63, 139–152.
    [Google Scholar]
  10. Garrington, T. P. & Johnson, G. L. ( 1999; ). Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr Opin Cell Biol 11, 211–218.[CrossRef]
    [Google Scholar]
  11. Gaynor, E. C., Cawthraw, S., Manning, G., MacKichan, J. K., Falkow, S. & Newell, D. G. ( 2004; ). The genome-sequenced variant of Campylobacter jejuni NCTC 11168 and the original clonal clinical isolate differ markedly in colonization, gene expression and virulence associated phenotypes. J Bacteriol 186, 503–517.[CrossRef]
    [Google Scholar]
  12. Giancotti, F. G. & Ruoslahti, E. ( 1999; ). Integrin signaling. Science 285, 1028–1032.[CrossRef]
    [Google Scholar]
  13. Girardin, S. E., Tournebize, R., Mavris, M. & 8 other authors ( 2001; ). CARD4/Nod1 mediates NF-κB and JNK activation by invasive Shigella flexneri. EMBO Rep 2, 736–742.[CrossRef]
    [Google Scholar]
  14. Harvey, P., Battle, T. & Leach, S. ( 1999; ). Different invasion phenotypes of Campylobacter isolates in Caco-2 cell monolayers. J Med Microbiol 48, 461–469.[CrossRef]
    [Google Scholar]
  15. Hickey, T. E., Baqar, S., Bourgeois, A. L., Ewing, C. P. & Guerry, P. ( 1999; ). Campylobacter jejuni stimulated secretion of interleukin-8 by INT407 cells. Infect Immun 67, 88–93.
    [Google Scholar]
  16. Hickey, T. E., McVeigh, A. L., Scott, D. A., Michielutti, R. E., Bixby, A., Carroll, S. A., Bourgeois, A. L. & Guerry, P. ( 2000; ). Campylobacter jejuni cytolethal distending toxin mediates release of interleukin-8 from intestinal epithelial cells. Infect Immun 68, 6535–6541.[CrossRef]
    [Google Scholar]
  17. Hobbie, S., Chen, L. M., Davis, R. J. & Galàn, J. E. ( 1997; ). Involvement of mitogen-activated protein kinase pathways in the nuclear responses and cytokine production induced by Salmonella typhimurium in cultured intestinal epithelial cells. J Immunol 159, 5550–5559.
    [Google Scholar]
  18. Hu, L. & Kopecko, D. J. ( 1999; ). Campylobacter jejuni induces host phosphorylation events and a transient calcium flux during entry into human intestinal cells. In Proceedings of the US–Japan Conference on Cholera and Other Bacterial Enteric Infections, vol. 35, pp. 158–163.
  19. Jin, S., Song, Y. C., Emilli, A., Sherman, P. M. & Chan, V. L. ( 2003; ). JlpA of Campylobacter jejuni interacts with surface-exposed heat shock protein 90α and triggers signalling pathways leading to the activation of NF-κB and p38 MAP kinase in epithelial cells. Cellular Microbiol 5, 165–174.[CrossRef]
    [Google Scholar]
  20. Karlyshev, A. V., Linton, D., Gregson, N. A., Lastovica, A. J. & Wren, B. W. ( 2000; ). Genetic and biochemical evidence of a Campylobacter jejuni capsular polysaccharide that accounts for Penner serotype specificity. Mol Microbiol 35, 529–541.
    [Google Scholar]
  21. Karlyshev, A. V., Everest, P., Linton, D., Cawthraw, S., Newell, D. G. & Wren, B. W. ( 2004; ). The Campylobacter jejuni general glycosylation system is important for attachment to human epithelial cells and in the colonization of chicks. Microbiology 150, 1957–1964.[CrossRef]
    [Google Scholar]
  22. Ketley, J. M. ( 1997; ). Pathogenesis of enteric infection by Campylobacter. Microbiology 143, 5–21.[CrossRef]
    [Google Scholar]
  23. Konkel, M. E., Mead, D. J., Hayes, S. F. & Cieplak, W. Jr ( 1992; ). Translocation of Campylobacter jejuni across human polarized epithelial cell monolayer cultures. J Infect Dis 166, 308–315.[CrossRef]
    [Google Scholar]
  24. Konkel, M. E., Kim, B. J., Rivera-Amill, V. & Garvis, S. G. ( 1999; ). Bacterial secreted proteins are required for the internalization of Campylobacter jejuni into cultured mammalian cells. Mol Microbiol 32, 691–701.[CrossRef]
    [Google Scholar]
  25. Konkel, M. E., Monteville, M. R., Rivera-Amill, V. & Joens, L. A. ( 2001; ). The pathogenesis of Campylobacter jejuni-mediated enteritis. Curr Issues Intest Microbiol 2, 55–71.
    [Google Scholar]
  26. Kopecko, D. J., Hu, L. & Zaal, K. J. M. ( 2001; ). Campylobacter jejuni – microtubule-dependent invasion. Trends Microbiol 9, 389–396.[CrossRef]
    [Google Scholar]
  27. Kyriakis, J. M. & Avruch, J. ( 1996; ). Sounding the alarm: protein kinase cascades activated by stress and inflammation. J Biol Chem 271, 24313–24316.[CrossRef]
    [Google Scholar]
  28. Lambert, M. E., Schofields, P. F., Ironside, A. G. & Mandal, B. K. ( 1979; ). Campylobacter colitis. Br Med J 1, 857–859.[CrossRef]
    [Google Scholar]
  29. Larsen, J. C., Szymanski, C. & Guerry, P. ( 2004; ). N-linked protein glycosylation is required for full competence in Campylobacter jejuni 81–176. J Bacteriol 186, 6508–6514.[CrossRef]
    [Google Scholar]
  30. Linton, D., Karlyshev, A. V., Hitchen, P. G., Morris, H. R., Dell, A., Gregson, N. A. & Wren, B. W. ( 2000; ). Multiple N-acetyl neuraminic acid synthetase (neuB) genes in Campylobacter jejuni: identification and characterization of the gene involved in sialylation of lipo-oligosaccharide. Mol Microbiol 35, 1120–1134.[CrossRef]
    [Google Scholar]
  31. Linton, D., Allan, E., Karlyshev, A. V., Cronshaw, A. D. & Wren, B. W. ( 2002; ). Identification of N-acetylgalactosamine-containing glycoproteins PEB3 and CgpA in Campylobacter jejuni. Mol Microbiol 43, 497–508.[CrossRef]
    [Google Scholar]
  32. Martino, M. C., Stabler, R. A., Zhang, Z. W., Farthing, M. J., Wren, B. W. & Dorrell, N. ( 2001; ). Helicobacter pylori pore-forming cytolysin orthologue TlyA possesses in vitro hemolytic activity and has a role in colonization of the gastric mucosa. Infect Immun 69, 1697–1703.[CrossRef]
    [Google Scholar]
  33. Mellits, K., Mullen, J., Wand, M., Armbruster, G., Patel, A., Connerton, P. L., Skelly, M. & Connerton, I. F. ( 2002; ). Activation of the transcription factor NF-κB by Campylobacter jejuni. Microbiology 148, 2753–2763.
    [Google Scholar]
  34. Meyer-ter-Vehn, T., Covacci, A., Kist, M. & Pahl, H. L. ( 2000; ). Helicobacter pylori activates mitogen activated protein kinase cascades and induces expression of the proto-oncogenes c-fos and c-jun. J Biol Chem 275, 16064–16072.[CrossRef]
    [Google Scholar]
  35. Monteville, M. R. & Konkel, M. E. ( 2002; ). Fibronectin-facilitated invasion of T84 eukaryotic cells by Campylobacter jejuni occurs preferentially at the basolateral cell surface. Infect Immun 70, 6665–6671.[CrossRef]
    [Google Scholar]
  36. Monteville, M. R., Yoon, J. E. & Konkel, M. E. ( 2003; ). Maximal adherence and invasion of INT 407 cells by Campylobacter jejuni requires the CadF outer-membrane protein and microfilament reorganisation. Microbiology 149, 153–165.[CrossRef]
    [Google Scholar]
  37. Orth, K., Palmer, L. E., Bao, Z. Q., Stewart, S., Rudolph, A. E., Bliska, J. B. & Dixon, J. E. ( 1999; ). Inhibition of the mitogen-activated protein kinase superfamily by a Yersinia effector. Science 285, 1920–1923.[CrossRef]
    [Google Scholar]
  38. Parkhill, J., Wren, B. W., Mungall, K. & 18 other authors ( 2000; ). The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403, 665–668.[CrossRef]
    [Google Scholar]
  39. Pei, Z. H., Ellison, R. T., III & Blaser, M. J. ( 1991; ). Identification, purification, and characterization of major antigenic proteins of Campylobacter jejuni. J Biol Chem 266, 16363–16369.
    [Google Scholar]
  40. Price, A. B., Jewkes, J. & Sanderson, P. J. ( 1979; ). Acute diarrhoea: Campylobacter colitis and the role of rectal biopsy. J Clin Pathol 32, 990–997.[CrossRef]
    [Google Scholar]
  41. Price, A. B., Dolby, J. M., Dunscombe, P. R. & Stirling, J. ( 1984; ). Detection of campylobacter by immunofluorescence in stools and rectal biopsies of patients with diarrhoea. J Clin Pathol 37, 1007–1013.[CrossRef]
    [Google Scholar]
  42. Skirrow, M. ( 1986; ). Campylobacter enteritis. In Medical Microbiology, vol. 4. Edited by C. S. F. Easmon. London: Academic Press.
  43. Skirrow, M. & Blaser, M. ( 2000; ). Clinical aspects of Campylobacter infection, pp. 68–88. In Campylobacter. Edited by I. Nachamkin & M. J. Blaser. Washington, DC: American Society for Microbiology.
  44. Tang, P., Sutherland, C. L., Gold, M. R. & Finlay, B. B. ( 1998; ). Listeria monocytogenes invasion of epithelial cells requires the MEK-1/ERK-2 mitogen-activated protein kinase pathway. Infect Immun 66, 1106–1112.
    [Google Scholar]
  45. van Spreeuwel, J. P., Duursma, G. C., Meijer, C. J., Bax, R., Rosekrans, P. C. M. & Lindeman, J. ( 1985; ). Campylobacter colitis: histological immunohistochemical and ultrastructural findings. Gut 26, 945–951.[CrossRef]
    [Google Scholar]
  46. van Vliet, A. H. M., Wood, A., Henderson, J., Wooldridge, K. & Ketley, J. M. ( 1998; ). Genetic manipulation of enteric Campylobacter species. In Bacterial Pathogenesis, vol. 27, pp. 407–419. Edited by P. Williams, J. Ketley & G. Salmond. London: Academic Press.
  47. Warny, M., Keates, A. C., Keates, S. & 7 other authors ( 2000; ). p38 MAP kinase activation by Clostridium difficile toxin A mediates monocyte necrosis, IL-8 production, and enteritis. J Clin Invest 105, 1147–1156.[CrossRef]
    [Google Scholar]
  48. Wassenaar, T. M. & Blaser, M. J. ( 1999; ). Pathophysiology of Campylobacter jejuni infections of humans. Microbes Infect 1, 1023–1033.[CrossRef]
    [Google Scholar]
  49. Wooldridge, K. G. & Ketley, J. M. ( 1997; ). Campylobacter–host cell interactions. Trends Microbiol 5, 96–102.[CrossRef]
    [Google Scholar]
  50. Wooldridge, K., Williams, P. H. & Ketley, J. M. ( 1996; ). Host signal transduction and endocytosis of Campylobacter jejuni. Microb Pathog 21, 299–305.[CrossRef]
    [Google Scholar]
  51. Zhang, Z. W., Dorrell, N., Wren, B. W. & Farthing, M. J. ( 2002; ). Helicobacter pylori adherence to gastric epithelial cells: a role for non-adhesin virulence genes. J Med Microbiol 51, 495–502.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27979-0
Loading
/content/journal/micro/10.1099/mic.0.27979-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error