1887

Abstract

Mini-Tn-induced mutants with defects in utilization of linear terpenes such as citronellol, geraniol, citronellate and/or geranylate were isolated from . One mutant was unable to utilize geraniol but showed wild-type growth with the three other acyclic terpenes tested. The Tn insertion site of the mutant was determined by DNA sequencing. Comparison with the genome sequence revealed that PA3028, an ORF with high similarity on the amino acid level to molybdenum cofactor biosynthesis protein A2 (encoded by ), was the target of mini-Tn in the mutant. Disruption of in PAO1 wild-type by insertion mutagenesis resulted in the same geraniol-minus phenotype. The ability to utilize geraniol was restored to the mutant by conjugative transfer of PCR-cloned wild-type on a broad-host-range plasmid. Growth of PAO1 on geraniol and geranial, but not on citronellol, citronellate or geranylate, was inhibited by the presence of 10 mM tungstate, a molybdenum-specific inhibitor. Inhibition by tungstate was prevented by addition of molybdate. The results indicate that at least one step in the oxidation of geraniol to geranic acid (geranial oxidation) is a molybdenum-dependent reaction in and is different from the molybdenum-independent oxidation of citronellol to citronellate.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27957-0
2005-07-01
2019-10-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/7/mic1512277.html?itemId=/content/journal/micro/10.1099/mic.0.27957-0&mimeType=html&fmt=ahah

References

  1. Cantwell, S. G., Lau, E. P., Watt, D. S. & Fall, R. R. ( 1978; ). Biodegradation of acyclic isoprenoids by Pseudomonas species. J Bacteriol 135, 324–333.
    [Google Scholar]
  2. de Lorenzo, V., Herrero, M., Jakubzik, U. & Timmis, K. N. ( 1990; ). Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in Gram-negative eubacteria. J Bacteriol 172, 6568–6572.
    [Google Scholar]
  3. Diaz-Perez, A. L., Zavala-Hernandez, A. N., Cervantes, C. & Campos-Garcia, J. ( 2004; ). The gnyRDBHAL cluster is involved in acyclic isoprenoid degradation in Pseudomonas aeruginosa. Appl Environ Microbiol 70, 5102–5110.[CrossRef]
    [Google Scholar]
  4. Fall, R. R. & Hector, M. L. ( 1977; ). Acyl-coenzyme A carboxylases. Homologous 3-methylcrotonyl-CoA and geranyl-CoA carboxylases from Pseudomonas citronellolis. Biochemistry 16, 4000–4005.[CrossRef]
    [Google Scholar]
  5. Hector, M. L. & Fall, R. R. ( 1976; ). Multiple acyl-coenzymeA carboxylases in Pseudomonas citronellolis. Biochemistry 15, 3465–3472.[CrossRef]
    [Google Scholar]
  6. Hille, R. ( 1999; ). Molybdenum enzymes. Essays Biochem 34, 125–137.
    [Google Scholar]
  7. Kovach, M. E., Elzer, P. H., Hill, D. S., Robertson, G. T., Farris, M. A., Roop, R. M. & Peterson, K. M. ( 1995; ). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166, 175–176.[CrossRef]
    [Google Scholar]
  8. Leimkühler, S., Angermüller, S., Schwarz, G., Mendel, R. R. & Klipp, W. ( 1999; ). Activity of the molybdopterin-containing xanthin dehydrogenase of Rhodobacter capsulatus can be restored by high molybdenum concentrations in a moeA mutant defective in molybdenum cofactor biosynthesis. J Bacteriol 181, 5930–5939.
    [Google Scholar]
  9. Mergeay, M., Nies, D., Schlegel, H. G., Gerits, J., Charles, P. & Van Gijsegem, F. ( 1985; ). Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J Bacteriol 162, 328–334.
    [Google Scholar]
  10. Moura, J. J., Brondino, C. D., Trincao, J. & Romao, M. J. ( 2004; ). Mo and W bis-MGD enzymes: nitrate reductases and formate dehydrogenases. J Biol Inorg Chem 9, 791–799.[CrossRef]
    [Google Scholar]
  11. Nichols, J. & Rajagopalan, K. V. ( 2002; ). Escherichia coli MoeA and MogA. Function in metal incorporation step of molybdenum cofactor biosynthesis. J Biol Chem 277, 24995–25000.[CrossRef]
    [Google Scholar]
  12. Nichols, J. D. & Rajagopalan, K. V. ( 2005; ). In vitro molybdenum ligation to molybdopterin using purified components. J Biol Chem 280, 7817–7822.[CrossRef]
    [Google Scholar]
  13. Schlegel, H. G., Kaltwasser, H. & Gottschalk, G. ( 1961; ). A submersion method for culture of hydrogen-oxidizing bacteria: growth physiological studies. Arch Mikrobiol 38, 209–222.[CrossRef]
    [Google Scholar]
  14. Seubert, W. ( 1960; ). Degradation of isoprenoid compounds by microorganisms: I. Isolation and characterization of an isoprenoid-degrading bacterium, Pseudomonas citronellolis n.sp. J Bacteriol 79, 426–434.
    [Google Scholar]
  15. Seubert, W. & Fass, E. ( 1964a; ). Untersuchungen über den bakteriellen Abbau von Isoprenoiden: IV. Reinigung und Eigenschaften der β-Isohexenylglutaconyl-CoA-hydratase und β-Hydroxy-β-isohexenylglutaryl-CoA-lyase. Biochem Z 341, 23–34.
    [Google Scholar]
  16. Seubert, W. & Fass, E. ( 1964b; ). Untersuchungen über den bakteriellen Abbau von Isoprenoiden: V. Der Mechanismus des Isoprenoidabbaues. Biochem Z 341, 35–44.
    [Google Scholar]
  17. Seubert, W., Fass, E. & Remberger, U. ( 1963; ). Untersuchungen über den bakteriellen Abbau von Isoprenoiden: III. Reinigung und Eigenschaften der Geranylcarboxylase. Biochem Z 338, 265–275.
    [Google Scholar]
  18. Simon, R., Priefer, U. & Pühler, A. ( 1983; ). A broad host-range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Biotechnology 1, 784–791.[CrossRef]
    [Google Scholar]
  19. Windgassen, M., Urban, A. & Jaeger, K. E. ( 2000; ). Rapid gene inactivation in Pseudomonas aeruginosa. FEMS Microbiol Lett 193, 201–205.[CrossRef]
    [Google Scholar]
  20. Wuebbens, M. M. & Rajagopalan, K. V. ( 2003; ). Mechanistic and mutational studies of Escherichia coli molybdopterin synthase clarify the final step of molybdopterin biosynthesis. J Biol Chem 278, 14523–14532.[CrossRef]
    [Google Scholar]
  21. Yanisch-Perron, C., Vieira, J. & Messing, J. ( 1985; ). Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33, 103–119.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27957-0
Loading
/content/journal/micro/10.1099/mic.0.27957-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error