1887

Abstract

The operon is essential for fruiting body formation, fibril (exopolysaccharide) production and social motility of . The locus contains a gene cluster homologous to chemotaxis genes such as (), (), (), () and (), as well as an unknown ORF called . This study used yeast two-hybrid analysis to investigate possible interactions between Dif proteins, and determined that DifA, C, D and E interact in a similar fashion to chemotaxis proteins of and . It also showed that DifF interacted with DifD, and that the novel protein DifB did not interact with Dif proteins. Furthermore, DifA–F proteins were used to determine other possible protein–protein interactions in the genomic library. The authors not only confirmed the specific interactions among known Dif proteins, but also discovered two novel interactions between DifE and Nla19, and DifB and YidC, providing some new information about the Dif signalling pathway. Based on these findings, a model for the Dif signalling pathway is proposed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27743-0
2005-05-01
2020-08-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/5/mic1511535.html?itemId=/content/journal/micro/10.1099/mic.0.27743-0&mimeType=html&fmt=ahah

References

  1. Ames P., Parkinson J. S. 1994; Constitutively signaling fragments of Tsr, the Escherichia coli serine chemoreceptor. J Bacteriol176:6340–6348
    [Google Scholar]
  2. Black W. P., Yang Z. 2004; Myxococcus xanthus chemotaxis homologs DifD and DifG negatively regulate fibril polysaccharide production. J Bacteriol186:1001–1008[CrossRef]
    [Google Scholar]
  3. Blackhart B. D., Zusman D. R. 1985; Cloning and complementation analysis of the “Frizzy” genes of Myxococcus xanthus. Mol Gen Genet198:243–254[CrossRef]
    [Google Scholar]
  4. Caberoy N. B., Welch R. D., Jakobsen J. S., Slater S. C., Garza A. G. 2003; Global mutational analysis of NtrC-like activators in Myxococcus xanthus: identifying activator mutants defective for motility and fruiting body development. J Bacteriol185:6083–6094[CrossRef]
    [Google Scholar]
  5. Campos J. M., Geisselsoder J., Zusman D. R. 1978; Isolation of bacteriophage MX4, a generalized transducing phage for Myxococcus xanthus. J Mol Biol119:167–178[CrossRef]
    [Google Scholar]
  6. Dalbey R. E., Kuhn A. 2004; YidC family members are involved in the membrane insertion, lateral integration, folding, and assembly of membrane proteins. J Cell Biol166:769–774[CrossRef]
    [Google Scholar]
  7. Eisenbach M. 1996; Control of bacterial chemotaxis. Mol Microbiol20:903–910[CrossRef]
    [Google Scholar]
  8. Garrity L. F., Ordal G. W. 1995; Chemotaxis in Bacillus subtilis: how bacteria monitor environmental signals. Pharmacol Ther68:87–104[CrossRef]
    [Google Scholar]
  9. Grebe T. W., Stock J. 1998; Bacterial chemotaxis: the five sensors of a bacterium. Curr Biol8:R154–R157[CrossRef]
    [Google Scholar]
  10. Helmann J. D., Marquez L. M., Chamberlin M. J. 1988; Cloning, sequencing, and disruption of the Bacillus subtilis sigma 28 gene. J Bacteriol170:1568–1574
    [Google Scholar]
  11. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. 1989; Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene77:51–59[CrossRef]
    [Google Scholar]
  12. Hodgkin J., Kaiser D. 1979a; Genetics of gliding motility in Myxococcus xanthus (Myxobacterales): genes controlling movement of single cells. Mol Gen Genet171:167–176[CrossRef]
    [Google Scholar]
  13. Hodgkin J., Kaiser D. 1979b; Genetics of gliding motility in Myxococcus xanthus: two gene systems control movement. Mol Gen Genet171:177–191[CrossRef]
    [Google Scholar]
  14. James P., Halladay J., Craig E. A. 1996; Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics144:1425–1436
    [Google Scholar]
  15. Jiang F., Yi L., Moore M., Chen M., Rohl T., Van Wijk K. J., De Gier J. W., Henry R., Dalbey R. E. 2002; Chloroplast YidC homolog Albino3 can functionally complement the bacterial YidC depletion strain and promote membrane insertion of both bacterial and chloroplast thylakoid proteins. J Biol Chem277:19281–19288[CrossRef]
    [Google Scholar]
  16. Kaiser D. 1979; Social gliding is correlated with the presence of pili in Myxococcus xanthus. Proc Natl Acad Sci U S A76:5952–5956[CrossRef]
    [Google Scholar]
  17. Kashefi K., Hartzell P. L. 1995; Genetic suppression and phenotypic masking of a Myxococcus xanthus frzF defect. Mol Microbiol15:483–494[CrossRef]
    [Google Scholar]
  18. Kirby J. R., Zusman D. R. 2003; Chemosensory regulation of developmental gene expression in Myxococcus xanthus. Proc Natl Acad Sci U S A100:2008–2013[CrossRef]
    [Google Scholar]
  19. Lancero H., Brofft J. E., Downard J., Birren B. W., Nusbaum C., Naylor J., Shi W., Shimkets L. J. 2002; Mapping of Myxococcus xanthus social motility dsp mutations to the dif genes. J Bacteriol184:1462–1465[CrossRef]
    [Google Scholar]
  20. Sambrook J., Fritsch E. F., Maniatis T. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  21. Samuelson J. C., Chen M., Jiang F., Moller I., Wiedmann M., Kuhn A., Phillips G. J., Dalbey R. E. 2000; YidC mediates membrane protein insertion in bacteria. Nature406:637–641[CrossRef]
    [Google Scholar]
  22. Shi W., Zusman D. R. 1993; The two motility systems of Myxococcus xanthus show different selective advantages on various surfaces. Proc Natl Acad Sci U S A90:3378–3382[CrossRef]
    [Google Scholar]
  23. Thomasson B., Link J., Stassinopoulos A. G., Burke N., Plamann L., Hartzell P. L. 2002; MglA, a small GTPase, interacts with a tyrosine kinase to control type IV pili-mediated motility and development of Myxococcus xanthus. Mol Microbiol46:1399–1413[CrossRef]
    [Google Scholar]
  24. Ueki T., Inouye S., Inouye M. 1996; Positive–negative KG cassettes for construction of multi-gene deletions using a single drug marker. Gene183:153–157[CrossRef]
    [Google Scholar]
  25. Urbanus M. L., Froderberg L., Drew D., Bjork P., de Gier J. W., Brunner J., Oudega B., Luirink J. 2002; Targeting, insertion, and localization of Escherichia coli YidC. J Biol Chem277:12718–12723[CrossRef]
    [Google Scholar]
  26. Vlamakis H. C., Kirby J. R., Zusman D. R. 2004; The Che4 pathway of Myxococcus xanthus regulates type IV pilus-mediated motility. Mol Microbiol52:1799–1811[CrossRef]
    [Google Scholar]
  27. Ward M. J., Zusman D. R. 1999; Motility in Myxococcus xanthus and its role in developmental aggregation. Curr Opin Microbiol2:624–629[CrossRef]
    [Google Scholar]
  28. Yang Z., Geng Y., Xu D., Kaplan H. B., Shi W. 1998; A new set of chemotaxis homologues is essential for Myxococcus xanthus social motility. Mol Microbiol30:1123–1130[CrossRef]
    [Google Scholar]
  29. Yang Z., Ma X., Tong L., Kaplan H. B., Shimkets L. J., Shi W. 2000; Myxococcus xanthus dif genes are required for biogenesis of cell surface fibrils essential for social gliding motility. J Bacteriol182:5793–5798[CrossRef]
    [Google Scholar]
  30. Zusman D. R. 1982; “Frizzy” mutants: a new class of aggregation-defective developmental mutants of Myxococcus xanthus. J Bacteriol150:1430–1437
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27743-0
Loading
/content/journal/micro/10.1099/mic.0.27743-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error