1887

Abstract

A 7·5 kbp cryptic plasmid is found in almost all isolates of . Real-time PCR assays, using TaqMan chemistry, were set up to quantify accurately both the chlamydial plasmid and the single copy, chromosomal gene in the infectious, elementary bodies (EBs) of L1 440. Plasmid copy number was also determined in the EBs of six other lymphogranuloma venereum (LGV) isolates (serovars L1–L3), ten trachoma isolates (serovars A–C) and nine urogenital isolates (serovars D–J). The results indicated an average plasmid copy number of 4·0±0·8 (mean±95 % confidence interval) plasmids per chromosome. During the chlamydial developmental cycle, up to 7·6 plasmids per chromosome were detected, indicating an increased plasmid copy number in the actively replicating reticulate bodies. Attempts to eliminate the plasmid from strain L1 440 using the plasmid-curing agents ethidium bromide, acridine orange or imipramine/novobiocin led to a paradoxical increase in plasmid copy number. It is speculated that the stress induced by chemical curing agents may stimulate the activity of plasmid-encoded replication (Rep) proteins. In contrast to , only a single isolate of bears a plasmid. strain N16 supports a 7·4 kbp plasmid in which ORF1, encoding one of the putative Rep proteins, is disrupted by a deletion and split into two smaller ORFs. Similar assay techniques revealed 1·3±0·2 plasmids per chromosome (mean±95 % confidence interval) in EBs of this strain. These findings are in agreement with the hypothesis that the ORF1-encoded protein is involved in, but not essential for, plasmid replication and control of copy number.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27625-0
2005-03-01
2019-09-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/3/mic1510893.html?itemId=/content/journal/micro/10.1099/mic.0.27625-0&mimeType=html&fmt=ahah

References

  1. Alexander, E. R., Wang, S. P. & Grayston, J. T. ( 1967; ). Further classification of TRIC agents from ocular trachoma and other sources by the mouse toxicity prevention test. Am J Ophthalmol 63 (Suppl.), 1469–1478.[CrossRef]
    [Google Scholar]
  2. An, Q., Radcliffe, G., Vassallo, R., Buxton, D., O'Brien, W. J., Pelletier, D. A., Weisburg, W. G., Klinger, J. D. & Olive, D. M. ( 1992; ). Infection with a plasmid-free variant chlamydia related to Chlamydia trachomatis identified by using multiple assays for nucleic acid detection. J Clin Microbiol 30, 2814–2821.
    [Google Scholar]
  3. Apfalter, P., Barousch, W., Nehr, M., Makristathis, A., Willinger, B., Rotter, M. & Hirschl, A. M. ( 2003; ). Comparison of a new quantitative ompA-based real-time PCR TaqMan assay for detection of Chlamydia pneumoniae DNA in respiratory specimens with four conventional PCR assays. J Clin Microbiol 41, 592–600.[CrossRef]
    [Google Scholar]
  4. Bailey, R. L., Hayes, L., Pickett, M., Whittle, H. C., Ward, M. E. & Mabey, D. C. W. ( 1994; ). Molecular epidemiology of trachoma in a Gambian village. Br J Ophthalmol 78, 813–817.[CrossRef]
    [Google Scholar]
  5. Basu, A., Chawla-Sarkar, M., Chakrabarti, S. & Das Gupta, S. K. ( 2002; ). Origin binding activity of the mycobacterial plasmid pAL5000 replication protein RepB is stimulated through interactions with host factors and coupled expression of repA. J Bacteriol 184, 2204–2214.[CrossRef]
    [Google Scholar]
  6. Bertrand-Burggraf, E., Oertel, P., Schnarr, M., Daune, M. & Granger-Schnarr, M. ( 1989; ). Effect of induction of SOS response on expression of pBR322 genes and on plasmid copy number. Plasmid 22, 163–168.[CrossRef]
    [Google Scholar]
  7. Black, C. M., Barnes, R. C., Birkness, K. A., Holloway, B. P. & Mayer, L. W. ( 1989; ). Nucleotide sequence of the common plasmid of Chlamydia trachomatis serovar L2 – use of compatible deletions to generate overlapping fragments. Curr Microbiol 19, 67–74.[CrossRef]
    [Google Scholar]
  8. Burstein, G. R. & Zenilman, J. M. ( 1999; ). Nongonococcal urethritis – a new paradigm. Clin Infect Dis 28 (Suppl. 1), S66–S73.[CrossRef]
    [Google Scholar]
  9. Campbell, L. A., Kuo, C.-C. & Grayston, J. T. ( 1987; ). Characterization of the new Chlamydia agent, TWAR, as a unique organism by restriction endonuclease analysis and DNA-DNA hybridization. J Clin Microbiol 25, 1911–1916.
    [Google Scholar]
  10. Chattoraj, D. K. ( 2000; ). Control of plasmid DNA replication by iterons: no longer paradoxical. Mol Microbiol 37, 467–476.
    [Google Scholar]
  11. Clarke, I. N. & Lambden, P. R. ( 1988; ). Stable cloning of the amino terminus of the 60 kDa outer membrane protein of Chlamydia trachomatis serovar L1. FEMS Microbiol Lett 51, 81–86.[CrossRef]
    [Google Scholar]
  12. Coker, P. R., Smith, K. L., Fellows, P. F., Rybachuck, G., Kousoulas, K. G. & Hugh-Jones, M. E. ( 2003; ). Bacillus anthracis virulence in guinea pigs vaccinated with anthrax vaccine adsorbed is linked to plasmid quantities and clonality. J Clin Microbiol 41, 1212–1218.[CrossRef]
    [Google Scholar]
  13. Comanducci, M., Ricci, S. & Ratti, G. ( 1988; ). The structure of a plasmid of Chlamydia trachomatis believed to be required for growth within mammalian cells. Mol Microbiol 2, 531–538.[CrossRef]
    [Google Scholar]
  14. Comanducci, M., Ricci, S., Cevenini, R. & Ratti, G. ( 1990; ). Diversity of the Chlamydia trachomatis common plasmid in biovars with different pathogenicity. Plasmid 23, 149–154.[CrossRef]
    [Google Scholar]
  15. Coupland, R. W. ( 1994; ). Quality-control, analytical sensitivity, and the polymerase chain-reaction. J Clin Immunoass 17, 237–242.
    [Google Scholar]
  16. Courtright, J. B., Turowski, D. A. & Sonstein, S. A. ( 1988; ). Alteration of bacterial DNA structure, gene expression, and plasmid encoded antibiotic resistance following exposure to enoxacin. J Antimicrob Chemother 21 (Suppl. B), 1–18.
    [Google Scholar]
  17. Crameri, R., Davies, J. E. & Hutter, R. ( 1986; ). Plasmid curing and generation of mutations induced with ethidium bromide in streptomycetes. J Gen Microbiol 132, 819–824.
    [Google Scholar]
  18. Everett, K. D. E., Bush, R. M. & Andersen, A. A. ( 1999; ). Emended description of the order Chlamydiales, proposal of Parachlamydiaceae fam. nov. and Simkaniaceae fam. nov., each containing one monotypic genus, revised taxonomy of the family Chlamydiaceae, including a new genus and five new species, and standards for the identification of organisms. Int J Syst Bacteriol 49, 415–440.[CrossRef]
    [Google Scholar]
  19. Everson, J. S., Garner, S. A., Lambden, P. R., Fane, B. A. & Clarke, I. N. ( 2003; ). Host range of chlamydiaphages πCPAR39 and Chp3. J Bacteriol 185, 6490–6492.[CrossRef]
    [Google Scholar]
  20. Farencena, A., Comanducci, M., Donati, M., Ratti, G. & Cevenini, R. ( 1997; ). Characterization of a new isolate of Chlamydia trachomatis which lacks the common plasmid and has properties of biovar trachoma. Infect Immun 65, 2965–2969.
    [Google Scholar]
  21. Garner, S., Everson, J. S., Lambden, P. R., Fane, B. & Clarke, I. N. ( 2004; ). Isolation, molecular characterisation and genome sequence of a bacteriophage (Chp3) from Chlamydophila pecorum. Virus Genes 28, 207–214.[CrossRef]
    [Google Scholar]
  22. Hackstadt, T., Fischer, E. R., Scidmore, M. A., Rockey, D. D. & Heinzen, R. A. ( 1997; ). Origins and functions of the chlamydial inclusion. Trends Microbiol 5, 288–293.[CrossRef]
    [Google Scholar]
  23. Hahn, D. L., Azenabor, A. A., Beatty, W. L. & Byrne, G. I. ( 2002; ). Chlamydia pneumoniae as a respiratory pathogen. Front Biosci 7, e66–e76.[CrossRef]
    [Google Scholar]
  24. Hatt, C., Ward, M. E. & Clarke, I. N. ( 1988; ). Analysis of the entire nucleotide sequence of the cryptic plasmid of Chlamydia trachomatis serovar L1. Evidence for involvement in DNA replication. Nucleic Acids Res 16, 4053–4067.[CrossRef]
    [Google Scholar]
  25. Hayes, L. J., Pickett, M. A., Conlan, J. W., Ferris, S., Everson, J. S., Ward, M. E. & Clarke, I. N. ( 1990; ). The major outer-membrane proteins of Chlamydia trachomatis serovars A and B: intra-serovar amino acid changes do not alter specificities of serovar- and C subspecies-reactive antibody-binding domains. J Gen Microbiol 136, 1559–1566.[CrossRef]
    [Google Scholar]
  26. Hayes, L. J., Bailey, R. L., Mabey, D. C. W., Clarke, I. N., Pickett, M. A., Watt, P. J. & Ward, M. E. ( 1992; ). Genotyping of Chlamydia trachomatis from a trachoma-endemic village in The Gambia by a nested polymerase chain reaction: identification of strain variants. J Infect Dis 166, 1173–1177.[CrossRef]
    [Google Scholar]
  27. Hayes, L. J., Yearsley, P., Treharne, J. D., Ballard, R. A., Fehler, G. H. & Ward, M. E. ( 1994; ). Evidence for naturally occurring recombination in the gene encoding the major outer membrane protein of lymphogranuloma venereum isolates of Chlamydia trachomatis. Infect Immun 62, 5659–5663.
    [Google Scholar]
  28. Hintz, N. J., Ennis, D. G., Liu, W. F. & Larsen, S. H. ( 1995; ). The recA gene of Chlamydia trachomatis: cloning, sequence, and characterization in Escherichia coli. FEMS Microbiol Lett 127, 175–180.[CrossRef]
    [Google Scholar]
  29. Ingmer, H., Miller, C. & Cohen, S. N. ( 2001; ). The RepA protein of plasmid pSC101 controls Escherichia coli cell division through the SOS response. Mol Microbiol 42, 519–526.[CrossRef]
    [Google Scholar]
  30. Janion, C., Sikora, A., Nowosielska, A. & Grzesiuk, E. ( 2002; ). Induction of the SOS response in starved Escherichia coli. Environ Mol Mutagen 40, 129–133.[CrossRef]
    [Google Scholar]
  31. Kapralek, F., Tichy, P. J., Fabry, M. & Sedlacek, J. ( 1998; ). Effects of temperature and novobiocin on the expression of calf prochymosin gene and on plasmid copy number in recombinant Escherichia coli. Folia Microbiol (Praha) 43, 63–67.[CrossRef]
    [Google Scholar]
  32. Lanham, S., Herbert, A., Basarab, A. & Watt, P. ( 2001; ). Detection of cervical infections in colposcopy clinic patients. J Clin Microbiol 39, 2946–2950.[CrossRef]
    [Google Scholar]
  33. Lin-Chao, S. & Bremer, H. ( 1986; ). Effect of the bacterial growth rate on replication control of plasmid pBR322 in Escherichia coli. Mol Gen Genet 203, 143–149.[CrossRef]
    [Google Scholar]
  34. Livak, K. J. ( 2001; ). Relative quantification of gene expression. ABI Prism 7700 Sequence Detection System user bulletin #2. Foster City, CA: Applied Biosystems. http://docs.appliedbiosystems.com/pebiodocs/04303859.pdf
  35. Lovett, M., Kuo, K.-K., Holmes, K. & Falkow, S. ( 1980; ). Plasmids of the genus Chlamydia. In Current Chemotherapy and Infectious Diseases, vol. 2, pp. 1250–1252. Edited by J. Nelson & C. Grassi. Washington, DC: American Society for Microbiology.
  36. Lusher, M., Storey, C. C. & Richmond, S. J. ( 1989; ). Plasmid diversity within the genus Chlamydia. J Gen Microbiol 135, 1145–1151.
    [Google Scholar]
  37. Lusher, M., Storey, C. C. & Richmond, S. J. ( 1991; ). Extrachromosomal elements of the genus Chlamydia. In Advances in Gene Technology, vol. 2, pp. 261–285. Edited by P. J. Greenaway. New York: Elsevier Science.
  38. Matsumoto, A., Izutsu, H., Miyashita, N. & Ohuchi, M. ( 1998; ). Plaque formation by and plaque cloning of Chlamydia trachomatis biovar trachoma. J Clin Microbiol 36, 3013–3019.
    [Google Scholar]
  39. McHugh, G. L. & Swartz, M. N. ( 1977; ). Elimination of plasmids from several bacterial species by novobiocin. Antimicrob Agents Chemother 12, 423–426.[CrossRef]
    [Google Scholar]
  40. Mesas, J. M., Rodriguez, M. C. & Alegre, M. T. ( 2004; ). Plasmid curing of Oenococcus oeni. Plasmid 51, 37–40.[CrossRef]
    [Google Scholar]
  41. Molnar, J. & Foldeak, S. ( 1989; ). Antiplasmid action of phenothiazines and related compounds. In Recent Advances in Chemotherapy. Proceedings of the 16th International Congress of Chemotherapy. Edited by E. Rubinstein & A. Dieter. Washington, DC: American Society for Microbiology.
  42. Molnar, J., Beladi, I. & Holland, I. B. ( 1978; ). The plasmid curing action of imipramine in Escherichia coli K12. Genet Res 31, 197–201.[CrossRef]
    [Google Scholar]
  43. Nath, K., Sarosy, J. W., Hahn, J. & Di Como, C. J. ( 2000; ). Effects of ethidium bromide and SYBR Green I on different polymerase chain reaction systems. J Biochem Biophys Methods 42, 15–29.[CrossRef]
    [Google Scholar]
  44. Paavonen, J. ( 1998; ). Pelvic inflammatory disease. From diagnosis to prevention. Dermatol Clin 16, 747–756.[CrossRef]
    [Google Scholar]
  45. Palmer, L. & Falkow, S. ( 1986; ). A common plasmid of Chlamydia trachomatis. Plasmid 16, 52–62.[CrossRef]
    [Google Scholar]
  46. Park, K., Han, E., Paulsson, J. & Chattoraj, D. K. ( 2001; ). Origin pairing (‘handcuffing’) as a mode of negative control of P1 plasmid copy number. EMBO J 20, 7323–7332.[CrossRef]
    [Google Scholar]
  47. Payne, D., Hoskins, S., Schouten, H., van Vleuten, H. & Tyring, S. ( 1995; ). Increased buffer pH enhances sensitivity and specificity of human papillomavirus detection using consensus primer based PCR. J Virol Methods 52, 105–110.[CrossRef]
    [Google Scholar]
  48. Peterson, E. M., Markoff, B. A., Schachter, J. & de la Maza, L. M. ( 1990; ). The 7·5-kb plasmid present in Chlamydia trachomatis is not essential for the growth of this microorganism. Plasmid 23, 144–148.[CrossRef]
    [Google Scholar]
  49. Pogozelski, W. K., Hamel, C. J. C., Woeller, C. F., Jackson, W. E., Zullo, S. J., Fischel-Ghodsian, N. & Blakely, W. F. ( 2003; ). Quantification of total mitochondrial DNA and the 4977-bp common deletion in Pearson's syndrome lymphoblasts using a fluorogenic 5′-nuclease (TaqMan) real-time polymerase chain reaction assay and plasmid external calibration standards. Mitochondrion 2, 415–427.[CrossRef]
    [Google Scholar]
  50. Pusterla, N., Huder, J. B., Leutenegger, C. M., Braun, U., Madigan, J. E. & Lutz, H. ( 1999; ). Quantitative real-time PCR for detection of members of the Ehrlichia phagocytophila genogroup in host animals and Ixodes ricinus ticks. J Clin Microbiol 37, 1329–1331.
    [Google Scholar]
  51. Ricci, S., Ratti, G. & Scarlato, V. ( 1995; ). Transcriptional regulation in the Chlamydia trachomatis pCT plasmid. Gene 154, 93–98.[CrossRef]
    [Google Scholar]
  52. Richmond, S. J., Stirling, P. & Ashley, C. R. ( 1982; ). Virus infecting the reticulate bodies of an avian strain of Chlamydia psittaci. FEMS Microbiol Lett 14, 31–36.[CrossRef]
    [Google Scholar]
  53. Rockey, D. D. & Matsumoto, A. ( 2000; ). The chlamydial developmental cycle. In Prokaryotic Development, pp. 403–425. Edited by Y. V. Brun & L. J. Shimkets. Washington, DC: American Society for Microbiology.
  54. Saikku, P., Leinonen, M., Tenkanen, L., Linnanmaki, E., Ekman, M.-R., Manninen, V., Mänttäri, M., Frick, M. H. & Huttunen, J. K. ( 1992; ). Chronic Chlamydia pneumoniae infection as a risk factor for coronary heart disease in the Helsinki heart study. Ann Intern Med 116, 273–278.[CrossRef]
    [Google Scholar]
  55. Sayadi, S., Nasri, M., Barbotin, J. N. & Thomas, D. ( 1989; ). Effect of environmental growth conditions on plasmid stability, plasmid copy number, and catechol 2,3-dioxygenase activity in free and immobilized Escherichia coli cells. Biotechnol Bioeng 33, 801–808.[CrossRef]
    [Google Scholar]
  56. Schachter, J. & Meyer, K. F. ( 1969; ). Lymphogranuloma venereum. II. Characterization of some recently isolated strains. J Bacteriol 99, 636–638.
    [Google Scholar]
  57. Schachter, J., Stephens, R. S., Timms, P. & 28 other authors ( 2001; ). Radical changes to chlamydial taxonomy are not necessary just yet. Int J Syst Evol Microbiol 51, 249.
    [Google Scholar]
  58. Shields, M. S., Kline, B. C. & Tam, J. E. ( 1986; ). A rapid method for the quantitative measurement of gene dosage: mini-F plasmid concentration as a function of cell growth rate. J Microbiol Methods 6, 33–46.[CrossRef]
    [Google Scholar]
  59. Sioud, M., Baldacci, G., de Recondo, A. M. & Forterre, P. ( 1988; ). Novobiocin induces positive supercoiling of small plasmids from halophilic archaebacteria in vivo. Nucleic Acids Res 16, 1379–1391.[CrossRef]
    [Google Scholar]
  60. Sozhamannan, S. & Chattoraj, D. K. ( 1993; ). Heat shock proteins DnaJ, DnaK, and GrpE stimulate P1 plasmid replication by promoting initiator binding to the origin. J Bacteriol 175, 3546–3555.
    [Google Scholar]
  61. Sriprakash, K. S. & MacAvoy, E. S. ( 1987a; ). A gene for DnaB like protein in chlamydial plasmid. Nucleic Acids Res 15, 10596.[CrossRef]
    [Google Scholar]
  62. Sriprakash, K. S. & MacAvoy, E. S. ( 1987b; ). Characterization and sequence of a plasmid from the trachoma biovar of Chlamydia trachomatis. Plasmid 18, 205–214.[CrossRef]
    [Google Scholar]
  63. Sriprakash, K. S. & Woodroffe, S. ( 1988; ). Early stages of chlamydial growth cycle are sensitive to ethidium bromide. In Proceedings of the European Society for Chlamydia Research (1st meeting), p. 97. Edited by P. A. Mardh & M. La Placa. Bologna: Societa Editrice Esculapio.
  64. Stephens, R. S., Kalman, S., Lammel, C. & 9 other authors ( 1998; ). Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282, 754–759.[CrossRef]
    [Google Scholar]
  65. Storey, C., Lusher, M., Yates, P. & Richmond, S. ( 1993; ). Evidence for Chlamydia pneumoniae of non-human origin. J Gen Microbiol 139, 2621–2626.[CrossRef]
    [Google Scholar]
  66. Stothard, D. R., Williams, J. A., Van der Pol, B. & Jones, R. B. ( 1998; ). Identification of a Chlamydia trachomatis serovar E urogenital isolate which lacks the cryptic plasmid. Infect Immun 66, 6010–6013.
    [Google Scholar]
  67. Stothard, D. R., Williams, J. A., Van der Pol, B. & Jones, R. B. ( 1999; ). Identification of a Chlamydia trachomatis serovar E urogenital isolate which lacks the cryptic plasmid (author's correction). Infect Immun 67, 2051.
    [Google Scholar]
  68. Tam, J. E., Davis, C. H., Thresher, R. J. & Wyrick, P. B. ( 1992; ). Location of the origin of replication for the 7·5-kb Chlamydia trachomatis plasmid. Plasmid 27, 231–236.[CrossRef]
    [Google Scholar]
  69. Tam, J. E., Davis, C. H. & Wyrick, P. B. ( 1994; ). Expression of recombinant DNA introduced into Chlamydia trachomatis by electroporation. Can J Microbiol 40, 583–591.[CrossRef]
    [Google Scholar]
  70. Thomas, N. S. & Clarke, I. N. ( 1992; ). Revised map of the Chlamydia trachomatis (L1/440/LN) plasmid. In Proceedings of the European Society for Chlamydial Research (2nd meeting), p. 42. Edited by P. A. Mardh, M. la Placa & M. E. Ward. Bologna: Societa Editrice Esculapio.
  71. Thomas, N. S., Lusher, M., Storey, C. C. & Clarke, I. N. ( 1997; ). Plasmid diversity in Chlamydia. Microbiology 143, 1847–1854.[CrossRef]
    [Google Scholar]
  72. Thylefors, B., Negrel, A. D., Pararajasegaram, R. & Dadzie, K. Y. ( 1995; ). Global data on blindness. Bull World Health Organ 73, 115–121.
    [Google Scholar]
  73. Tichopad, A., Dilger, M., Schwarz, G. & Pfaffl, M. W. ( 2003; ). Standardized determination of real-time PCR efficiency from a single reaction set-up. Nucleic Acids Res 31, e122.[CrossRef]
    [Google Scholar]
  74. Tipples, G. & McClarty, G. ( 1993; ). The obligate intracellular bacterium Chlamydia trachomatis is auxotrophic for three of the four ribonucleoside triphosphates. Mol Microbiol 8, 1105–1114.[CrossRef]
    [Google Scholar]
  75. Trevors, J. T. ( 1986; ). Plasmid curing in bacteria. FEMS Microbiol Rev 32, 149–157.[CrossRef]
    [Google Scholar]
  76. Tuffrey, M., Falder, P., Gale, J. & Taylor-Robinson, D. ( 1986; ). Salpingitis in mice induced by human strains of Chlamydia trachomatis. Br J Exp Pathol 67, 605–616.
    [Google Scholar]
  77. van Doornum, G. J. J., Guldemeester, J., Osterhaus, A. D. M. E. & Niesters, H. G. M. ( 2003; ). Diagnosing herpesvirus infections by real-time amplification and rapid culture. J Clin Microbiol 41, 576–580.[CrossRef]
    [Google Scholar]
  78. Wang, S. P. & Grayston, J. T. ( 1963; ). Classification of trachoma virus strains by protection of mice from toxic death. J Immunol 90, 849–856.
    [Google Scholar]
  79. Wang, S. & Grayston, J. T. ( 1975; ). Chlamydia trachomatis immunotype J. J Immunol 115, 1711–1716.
    [Google Scholar]
  80. Wardrop, S., Fowler, A., O'Callaghan, P., Giffard, P. & Timms, P. ( 1999; ). Characterization of the koala biovar of Chlamydia pneumoniae at four gene loci – ompAVD4, ompB, 16S rRNA, groESL spacer region. Syst Appl Microbiol 22, 22–27.[CrossRef]
    [Google Scholar]
  81. Watson, M. W., Lambden, P. R., Ward, M. E. & Clarke, I. N. ( 1989; ). Chlamydia trachomatis 60 kDa cysteine rich outer-membrane protein: sequence homology between trachoma and LGV biovars. FEMS Microbiol Lett 65, 293–298.[CrossRef]
    [Google Scholar]
  82. Watson, M. W., al-Mahdawi, S., Lambden, P. R. & Clarke, I. N. ( 1990; ). The nucleotide sequence of the 60 kDa cysteine rich outer membrane protein of Chlamydia pneumoniae strain IOL-207. Nucleic Acids Res 18, 5299.[CrossRef]
    [Google Scholar]
  83. Watson, M. W., Lambden, P. R. & Clarke, I. N. ( 1991; ). Genetic diversity and identification of human infection by amplification of the chlamydial 60-kilodalton cysteine-rich outer-membrane protein gene. J Clin Microbiol 29, 1188–1193.
    [Google Scholar]
  84. Weidmann, M., Meyer-Konig, U. & Hufert, F. T. ( 2003; ). Rapid detection of herpes simplex virus and varicella-zoster virus infections by real-time PCR. J Clin Microbiol 41, 1565–1568.[CrossRef]
    [Google Scholar]
  85. Wills, J. M., Watson, G., Lusher, M., Mair, T. S., Wood, D. & Richmond, S. J. ( 1990; ). Characterisation of Chlamydia psittaci isolated from a horse. Vet Microbiol 24, 11–19.[CrossRef]
    [Google Scholar]
  86. Wilson, A. C. & Tan, M. ( 2004; ). Stress response gene regulation in Chlamydia is dependent on HrcA-CIRCE interactions. J Bacteriol 186, 3384–3391.[CrossRef]
    [Google Scholar]
  87. Wittwer, C. T., Herrmann, M. G., Moss, A. A. & Rasmussen, R. P. ( 1997; ). Continuous fluorescence monitoring of rapid cycle DNA amplification. Biotechniques 22, 130–138.
    [Google Scholar]
  88. Yates, S., Penning, M., Goudsmit, J., Frantzen, I., van de Weijer, B., van Strijp, D. & van Gemen, B. ( 2001; ). Quantitative detection of hepatitis B virus DNA by real-time nucleic acid sequence-based amplification with molecular beacon detection. J Clin Microbiol 39, 3656–3665.[CrossRef]
    [Google Scholar]
  89. Zhang, Y. & Griffiths, M. W. ( 2003; ). Induced expression of the heat shock protein genes uspA and grpE during starvation at low temperatures and their influence on thermal resistance of Escherichia coli O157 : H7. J Food Prot 66, 2045–2050.
    [Google Scholar]
  90. Zhang, D. J., Fan, H., McClarty, G. & Brunham, R. C. ( 1995; ). Identification of the Chlamydia trachomatis RecA-encoding gene. Infect Immun 63, 676–680.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27625-0
Loading
/content/journal/micro/10.1099/mic.0.27625-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error