1887

Abstract

Phasins play an important role in the formation of poly(3-hydroxybutyrate) [poly(3HB)] granules and affect their size. Recently, three homologues of the phasin protein PhaP1 were identified in strain H16. The functions of PhaP2, PhaP3 and PhaP4 were examined by analysis of H16 deletion strains (Δ, Δ, Δ, Δ, Δ, Δ and Δ). When cells were grown under conditions permissive for poly(3HB) accumulation, the wild-type strain and all single-phasin negative mutants (Δ, Δ and Δ), with the exception of Δ, showed similar growth and poly(3HB) accumulation behaviour, and also the size and number of the granules were identical. The single Δ mutant and the Δ, Δ and Δ mutants showed an almost identical growth behaviour; however, they accumulated poly(3HB) at a significantly lower level than wild-type and the single Δ, Δ or Δ mutants. Gel-mobility-shift assays and DNaseI footprinting experiments demonstrated the capability of the transcriptional repressor PhaR to bind to a DNA region +36 to +46 bp downstream of the start codon. The protected sequence exhibited high similarity to the binding sites of PhaR upstream of , which were identified recently. In contrast, PhaR did not bind to the upstream or intergenic regions of and , thus indicating that the expression of these two phasins is regulated in a different way. Our current model for the regulation of phasins in strain H16 was extended and confirmed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27613-0
2005-03-01
2020-10-01
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/3/mic1510825.html?itemId=/content/journal/micro/10.1099/mic.0.27613-0&mimeType=html&fmt=ahah

References

  1. Anderson A. J., Dawes E. A. 1990; Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev54:450–472
    [Google Scholar]
  2. Asrar J., Gruys K. J. 2002; Biodegradable polymer (Biopol®. In Biopolymers – (Polyesters III – Applications and Commercial Products) vol 4 pp53–90 Edited by Doi Y., Steinbüchel A.. Weinheim: Wiley-VCH;
    [Google Scholar]
  3. Birnboim H. C., Doly J. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res277:1513–1523
    [Google Scholar]
  4. Bolivar F., Rodriguez R. L., Greene P. J., Betlach M. C., Heyneker H. L., Boyer H. W. 1977; Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene2:95–113[CrossRef]
    [Google Scholar]
  5. Brandl H., Gross R. A., Lenz R. W., Fuller R. C. 1988; Pseudomonas oleovorans as a source of poly(β-hydroxyalkanoates) for potential applications as biodegradable polyesters. Appl Environ Microbiol66:2117–2124
    [Google Scholar]
  6. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol166:557–580[CrossRef]
    [Google Scholar]
  7. Haywood H. W., Anderson A. J., Chu L., Dawes A. E. 1988a; Characterization of two 3-ketothiolases possessing differing substrate specificities in the polyhydroxyalkanoate synthesizing organism Alcaligenes eutrophus. FEMS Microbiol Lett52:91–96[CrossRef]
    [Google Scholar]
  8. Haywood H. W., Anderson A. J., Chu L., Dawes A. E. 1988b; The role of NADH- and NADPH-linked acetoacetyl-CoA reductases in the poly-3-hydroxybutyrate synthesizing organism Alcaligenes eutrophus. FEMS Microbiol Lett52:259–264[CrossRef]
    [Google Scholar]
  9. Hocking P. J., Marchessault R. H. 1994; Biopolyesters. In Chemistry and Technology of Biodegradable Polymers pp48–96 Edited by Griffin G. J. L.. London: Chapman & Hall;
    [Google Scholar]
  10. Hogrefe C., Friedrich B, Römermann D.. 1981; Alcaligenes eutrophus hydrogenase genes (Hox. J Bacteriol158:43–48
    [Google Scholar]
  11. Huang A. H. C. 1992; Oil bodies and oleosins in seeds. Annu Rev Plant Phys43:177–200
    [Google Scholar]
  12. Marmur J. 1961; A procedure for the isolation of desoxyribonucleic acids from microorganisms. J Mol Biol3:208–218[CrossRef]
    [Google Scholar]
  13. Oeding V., Schlegel H. G. 1973; β-Ketothiolase from Hydrogenomonas eutropha H16 and its significance in the regulation of poly-β-hydroxybutyrate metabolism. Biochem J134:239–248
    [Google Scholar]
  14. Overhage J., Priefert H., Rabenhorst J., Steinbüchel A. 1999; Biotransformation of eugenol to vanillin by a mutant of Pseudomonas sp. strain HR199 constructed by disruption of the vanillin dehydrogenase (vdh) gene. Appl Microbiol Biotechnol52:820–828[CrossRef]
    [Google Scholar]
  15. Peoples O. P., Sinskey A. J. 1989; Poly-β-hydroxybutyrate (PHB) biosynthesis in Alcaligenes eutrophus H16. Identification and characterization of the PHB polymerase gene (phbC. J Biol Chem264:15298–15303
    [Google Scholar]
  16. Pieper-Fürst U., Madkour M. H., Mayer F., Steinbüchel A. 1995; Identification of the region of a 14-kilodalton protein of Rhodococcus ruber that is responsible for the binding of this phasin to polyhydroxyalkanoic acid granules. J Bacteriol177:2513–2523
    [Google Scholar]
  17. Poirier Y., Gruys K. J. 2002; Production of polyhydroxyalkanoates in transgenic plants. In Biopolymers – (Polyesters I – Biological Systems and Biotechnological Production) vol 3A pp401–435 Edited by Doi Y., Steinbüchel A. . Weinheim: Wiley-VCH;
    [Google Scholar]
  18. Pötter M., Madkour M. H., Mayer F., Steinbüchel A. 2002; Regulation of phasin expression and polyhydroxyalkanoate (PHA) granule formation in Ralstonia eutropha H16. Microbiology148:2413–2426
    [Google Scholar]
  19. Pötter M., Müller H., Reinecke F., Wieczorek R., Fricke F., Bowien B., Friedrich B., Steinbüchel A. 2004; The complex structure of polyhydroxybutyrate (PHB) granules: four orthologous and paralogous phasins occur in Ralstonia eutropha. Microbiology150:2301–2311[CrossRef]
    [Google Scholar]
  20. Quandt J., Hynes M. F. 1993; Versatile suicide vectors which allow direct selection for gene replacement in Gram-negative bacteria. Gene127:15–21[CrossRef]
    [Google Scholar]
  21. Sambrook J., Fritsch E. F., Maniatis T. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  22. Schlegel H. G., Kaltwasser H., Gottschalk G. 1961; Ein Submersverfahren zur Kultur wasserstoffoxidierender Bakterien: Wachstumsphysiologische Untersuchungen. Arch Mikrobiol38:209–222[CrossRef]
    [Google Scholar]
  23. Schubert P., Schlegel H. G, Steinbüchel A.. 1988; Cloning of the Alcaligenes eutrophus genes for synthesis of poly-β-hydroxybutyric acid (PHB) and synthesis of PHB inEscherichia coli. J Bacteriol170:5837–5847
    [Google Scholar]
  24. Schwartz E., Henne A., Cramm R., Eitinger T., Friedrich B., Gottschalk G. 2003; Complete nucleotide sequence of pHG1: a Ralstonia eutropha H16 megaplasmid encoding key enzymes of H2-based lithoautotrophy and anaerobiosis. J Mol Biol332:369–383[CrossRef]
    [Google Scholar]
  25. Simon R., Priefer U., Pühler A. 1983a; Vector plasmids for in vivo and in vitro manipulations of Gram negative bacteria. In Molecular Genetics of the Bacteria-Plant Interaction pp98–106 Edited by Pühler A.. Berlin: Springer;
    [Google Scholar]
  26. Simon R., Priefer U., Pühler A. 1983b; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Bio/Technology1:784–791[CrossRef]
    [Google Scholar]
  27. Slater S. C., Voige W. H., Dennis D. E. 1988; Cloning and expression in Escherichia coli of the Alcaligenes eutrophus H16 poly-β-hydroxybutyrate biosynthetic pathway. J Bacteriol170:4431–4436
    [Google Scholar]
  28. Slater T., Houmiel K. L., Tran M., Mitsky T. A., Taylor N. B., Padgette S. R., Gruys K. J. 1998; Multiple β-ketothiolases mediate poly(β-hydroxyalkanoate) copolymer synthesis inRalstonia eutropha. J Bacteriol180:1979–1987
    [Google Scholar]
  29. Spiekermann P., Rehm B. H. A., Kalscheuer R., Baumeister D, Steinbüchel A. 1999; A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Arch Microbiol171:73–80[CrossRef]
    [Google Scholar]
  30. Spurr A. R. 1969; A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res26:31–43[CrossRef]
    [Google Scholar]
  31. Srinivasan S., Barnard G. C., Gerngross T. U. 2002; A novel high-cell-density protein expression system based on Ralstonia eutropha. Appl Environ Microbiol68:5925–5932[CrossRef]
    [Google Scholar]
  32. Steinbüchel A., Valentin H. E. 1995; Diversity of microbial polyhydroxyalkanoic acids. FEMS Microbiol Lett128:219–228[CrossRef]
    [Google Scholar]
  33. Steinbüchel A., Aerts K., Babel W. & 8 other authors. 1995; Considerations on the structure and biochemistry of bacterial polyhydroxyalkanoic acid inclusions. Can J Microbiol41:Suppl 194–105[CrossRef]
    [Google Scholar]
  34. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res22:4673–4680[CrossRef]
    [Google Scholar]
  35. Timm A., Steinbüchel A. 1990; Formation of polyesters consisting of medium-chain-length 3-hydroxyalkanoic acids from gluconate by Pseudomonas aeruginosa and other fluorescent pseudomonads. Appl Environ Microbiol56:3360–3367
    [Google Scholar]
  36. Walther-Mauruschat A., Aragno M., Mayer F., Schlegel H. G. 1977; Micromorphology of Gram-negative hydrogen bacteria. II. Cell envelope, membranes, and cytoplasmic inclusions. Arch Microbiol114:101–110[CrossRef]
    [Google Scholar]
  37. Wieczorek R., Pries A., Mayer F, Steinbüchel A.. 1995; Analysis of a 24-kilodalton protein associated with the polyhydroxyalkanoic acid granules in Alcaligenes eutrophus. J Bacteriol177:2425–2435
    [Google Scholar]
  38. Williams S. F., Martin D. P. 2002; Applications of PHAs in medicine and pharmacy. In Biopolymers – (Polyesters III – Applications and Commercial Products) vol 4 pp91–127 Edited by Doi Y., Steinbüchel A.. Weinheim: Wiley-VCH;
    [Google Scholar]
  39. York G. M., Junker B. H., Stubbe J. A., Sinskey A. J. 2001a; Accumulation of the PhaP phasin of Ralstonia eutropha is dependent on production of polyhydroxybutyrate in cells. J Bacteriol183:4217–4226[CrossRef]
    [Google Scholar]
  40. York G. M., Stubbe J., Sinskey A. J. 2001b; New insight into the role of the PhaP phasin of Ralstonia eutropha in promoting synthesis of polyhydroxybutyrate. J Bacteriol183:2394–2397[CrossRef]
    [Google Scholar]
  41. York G. M., Stubbe J., Sinskey A. J. 2002; The Ralstonia eutropha PhaR protein couples synthesis of the PhaP phasin to the presence of polyhydroxybutyrate in cells and promotes polyhydroxybutyrate production. J Bacteriol184:59–66[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27613-0
Loading
/content/journal/micro/10.1099/mic.0.27613-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error