1887

Abstract

An in-depth polyphasic approach was applied to study the population structure of the human pathogen . To assess the intraspecific biodiversity of this species, which is the causative agent of gastrointestinal diseases, a total of 90 isolates from diverse geographical origin were studied by genetic [M13-PCR, random amplification of polymorphic DNA (RAPD), multilocus sequence typing (MLST)] and phenetic [Fourier transform Infrared (FTIR), protein profiling, biochemical assays] methods. The strain set included clinical strains, isolates from food remnants connected to outbreaks, as well as isolates from diverse food environments with a well documented strain history. The phenotypic and genotypic analysis of the compiled panel of strains illustrated a considerable diversity among connected to diarrhoeal syndrome and other non-emetic food strains, but a very low diversity among emetic isolates. Using all typing methods, cluster analysis revealed a single, distinct cluster of emetic strains. The isolates belonging to this cluster were neither able to degrade starch nor could they ferment salicin; they did not possess the genes encoding haemolysin BL (Hbl) and showed only weak or no haemolysis. In contrast, haemolytic-enterotoxin-producing strains showed a high degree of heterogeneity and were scattered over different clusters when different typing methods were applied. These data provide evidence for a clonal population structure of cereulide-producing emetic and indicate that emetic strains represent a highly clonal complex within a potentially panmictic or weakly clonal background population structure of the species. It may have originated only recently through acquisition of specific virulence factors such as the cereulide synthetase gene.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27607-0
2005-01-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/1/mic1510183.html?itemId=/content/journal/micro/10.1099/mic.0.27607-0&mimeType=html&fmt=ahah

References

  1. Agata, N., Mori, M., Ohta, M., Suwan, S., Ohtani, I. & Isobe, M. ( 1994; ). A novel dodecadepsipeptide, cereulide, isolated from Bacillus cereus causes vacuole formation in HEp-2 cells. FEMS Microbiol Lett 121, 31–34.
    [Google Scholar]
  2. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  3. Beecher, D. J., Schoeni, J. L. & Wong, A. C. L. ( 1995; ). Enterotoxic activity of hemolysin BL from Bacillus cereus. Infect Immun 63, 4423–4428.
    [Google Scholar]
  4. Claus, D. & Berkeley, R. C. W. ( 1986; ). Genus Bacillus Cohn 1872, 174AL. In Bergey's Manual of Systematic Bacteriology, vol. 2, pp. 1105–1139. Edited by P. H. A. Sneath, N. S. Mair, M. E. Sharpe & J. G. Holt. Baltimore, MD: Williams & Wilkins.
  5. Daffonchio, D., Borin, S., Frova, G., Gallo, R., Mori, E., Fani, R. & Sorlini, C. ( 1999; ). A randomly amplified polymorphic DNA marker specific for the Bacillus cereus group is diagnostic for Bacillus anthracis. Appl Environ Microbiol 65, 1298–1303.
    [Google Scholar]
  6. Drobniewski, F. A. ( 1993; ). Bacillus cereus and related species. Clin Microbiol Rev 6, 324–338.
    [Google Scholar]
  7. Dykhuizen, D. E. & Baranton, G. ( 2001; ). The implications of a low rate of horizontal transfer in Borrelia. Trends Microbiol 9, 344–350.[CrossRef]
    [Google Scholar]
  8. Dykhuizen, D. E. & Green, L. ( 1991; ). Recombination in Escherichia coli and the definition of biological species. J Bacteriol 173, 7257–7268.
    [Google Scholar]
  9. Ehling-Schulz, M., Fricker, M. & Scherer, S. ( 2004a; ). Bacillus cereus, the causative agent of an emetic type of foodborne illness. Mol Nutr Food Res 48, 479–487.[CrossRef]
    [Google Scholar]
  10. Ehling-Schulz, M., Fricker, M. & Scherer, S. ( 2004b; ). Identification of emetic toxin producing Bacillus cereus strains by a novel molecular assay. FEMS Microbiol Lett 232, 189–195.[CrossRef]
    [Google Scholar]
  11. Ehling-Schulz, M., Vukov, N., Schulz, A., Shaheen, R., Andersson, M., Märtlbauer, E. & Scherer, S. ( 2005; ). Identification and partial characterization of the nonribosomal peptide synthase gene responsible for cereulide production in emetic Bacillus cereus. Appl Environ Microbiol 71 (in press).
    [Google Scholar]
  12. Feil, E. J. & Spratt, B. G. ( 2001; ). Recombination and the population structures of bacterial pathogens. Annu Rev Microbiol 55, 561–590.[CrossRef]
    [Google Scholar]
  13. Feil, E. J., Cooper, J. E., Grundmann, H. & 9 other authors ( 2003; ). How clonal is Staphylococcus aureus? J Bacteriol 185, 3307–3316.[CrossRef]
    [Google Scholar]
  14. Finlay, W. J., Logan, N. A. & Sutherland, A. D. ( 1999; ). Semiautomated metabolic staining assay for Bacillus cereus emetic toxin. Appl Environ Microbiol 65, 1811–1812.
    [Google Scholar]
  15. Gordon, R. E., Haynes, W. C. & Pang, C. H.-N. ( 1973; ). The genus Bacillus. Washington, DC: US Department of Agriculture.
  16. Granum, P. E. ( 1994; ). Bacillus cereus and its toxins. J Appl Bacteriol Symp Suppl 23, 61S–66S.
    [Google Scholar]
  17. Granum, P. E. ( 2001; ). Bacillus cereus. In Food Microbiology: Fundamentals and Frontiers, pp. 373–381. Edited by M. P. Doyle & others. Washington, DC: American Society for Microbiology.
  18. Granum, P. E., O'Sullivan, K. & Lund, T. ( 1999; ). The sequence of a non-hemolytic enterotoxin operon from Bacillus cereus. FEMS Microbiol Lett 177, 225–229.[CrossRef]
    [Google Scholar]
  19. Guinebretiere, M. H., Broussolle, V. & Nguyen-The, C. ( 2002; ). Enterotoxigenic profiles of food-poisoning and food-borne Bacillus cereus strains. J Clin Microbiol 40, 3053–3056.[CrossRef]
    [Google Scholar]
  20. Gürtler, V. & Stanisich, V. A. ( 1996; ). New approaches to typing and identification of bacteria using the 16S–23S rDNA spacer region. Microbiology 142, 3–16.[CrossRef]
    [Google Scholar]
  21. Heinrichs, J. H., Beecher, D. J., Macmillan, J. D. & Zilinskas, B. A. ( 1993; ). Molecular cloning and characterization of the hblA gene encoding the B component of hemolysin BL from Bacillus cereus. J Bacteriol 175, 6760–6766.
    [Google Scholar]
  22. Helgason, E., Okstad, O. A., Caugant, D. A., Johansen, H. A., Fouet, A., Mock, M., Hegna, I. & Kolstø, A. B. ( 2000a; ). Bacillus anthracis, Bacillus cereus and Bacillus thuringiensis – one species on the basis of genetic evidence. Appl Environ Microbiol 66, 2627–2630.[CrossRef]
    [Google Scholar]
  23. Helgason, E., Caugant, D. A., Olsen, I. & Kolstø, A. B. ( 2000b; ). Genetic structure of population of Bacillus cereus and Bacillus thuringiensis associated with periodontitis and other human infections. J Clin Microbiol 38, 1615–1622.
    [Google Scholar]
  24. Helgason, E., Tourasse, N. J., Meisal, R., Caugant, D. A. & Kolstø, A. B. ( 2004; ). Multilocus sequence typing scheme for bacteria of the Bacillus cereus group. Appl Environ Microbiol 70, 191–201.[CrossRef]
    [Google Scholar]
  25. Henderson, I., Duggleby, C. J. & Turnbull, P. C. ( 1994; ). Differentiation of Bacillus anthracis from other Bacillus cereus group bacteria with the PCR. Int J Syst Bacteriol 44, 99–105.[CrossRef]
    [Google Scholar]
  26. Hill, K. K., Ticknor, L. O., Okinaka, R. T. & 13 other authors ( 2004; ). Fluorescent amplified fragment length polymorphism analysis of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis isolates. Appl Environ Microbiol 70, 1068–1080.[CrossRef]
    [Google Scholar]
  27. Hoffmaster, A. R., Ravel, J., Rasko, D. A. & 19 other authors ( 2004; ). Identification of anthrax toxin genes in a Bacillus cereus associated with an illness resembling inhalation anthrax. Proc Natl Acad Sci U S A 101, 8449–8454.[CrossRef]
    [Google Scholar]
  28. Jääskeläinen, E. I., Häggblom, M. M., Andersson, M. A., Vanne, L. & Salkinoja-Salonen, M. ( 2003; ). Potential of Bacillus cereus for producing an emetic toxin in bakery products: quantitive analysis by chemical and biological methods. J Food Protec 66, 1047–1054.
    [Google Scholar]
  29. Keim, P., Kalif, A., Schupp, J. & 7 other authors ( 1997; ). Molecular evolution and diversity in Bacillus anthracis as detected by amplified fragment length polymorphism markers. J Bacteriol 179, 818–824.
    [Google Scholar]
  30. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  31. Lechner, S., Mayr, R., Francis, K. P., Prüß, B. M., Kaplan, T., Wießner-Gunkel, E. G., Stewart, G. S. & Scherer, S. ( 1998; ). Bacillus weihenstephanensis sp. nov. is a new psychrotolerant species of the Bacillus cereus group. Int J Syst Bacteriol 48, 1373–1382.[CrossRef]
    [Google Scholar]
  32. Levier, D., Hirst, D., Holt, C. & Williams, A. G. ( 1997; ). Effect of sampling procedure and strain variation in Listeria monocytogenes on the discrimination of species in the genus Listeria by Fourier transform infrared spectroscopy and canonical variates analysis. FEMS Microbiol Lett 147, 45–50.[CrossRef]
    [Google Scholar]
  33. Lund, T., De Buyser, M. L. & Granum, P. E. ( 2000; ). A new cytotoxin from Bacillus cereus that may cause necrotic enteritis. Mol Microbiol 38, 254–261.[CrossRef]
    [Google Scholar]
  34. Mahler, H., Pasi, A., Kramer, J. M., Schulte, P., Scoging, A. C., Bär, W. & Krähenbühl, S. ( 1997; ). Fulminant liver failure in association with the emetic toxin of Bacillus cereus. N Engl J Med 336, 1142–1148.[CrossRef]
    [Google Scholar]
  35. Maoz, A., Mayr, R. & Scherer, S. ( 2003; ). Temporal stability and biodiversity of two complex, anti-listerial cheese ripening microbial consortia. Appl Environ Microbiol 69, 4012–4018.[CrossRef]
    [Google Scholar]
  36. Maynard-Smith, J., Feil, E. J. & Smith, N. H. ( 2000; ). Population structure and evolutionary dynamics of pathogenic bacteria. BioEssays 22, 1115–1122.[CrossRef]
    [Google Scholar]
  37. Nilsson, J., Svensson, B., Ekelund, K. & Christiansson, A. ( 1998; ). A RAPD-PCR method for large-scale typing of Bacillus cereus. Lett Appl Microbiol 27, 168–172.[CrossRef]
    [Google Scholar]
  38. Oberreuter, H., Seiler, H. & Scherer, S. ( 2002a; ). Identification of coryneform bacteria and related taxa by Fourier-transformed infrared (FT-IR) spectroscopy. Int J Syst Evol Microbiol 52, 91–100.
    [Google Scholar]
  39. Oberreuter, H., Charzinski, J. & Scherer, S. ( 2002b; ). Intraspecific diversity of Brevibacterium linens, Corynebacterium glutamicum and Rhodococcus erythropolis based on partial 16S rDNA sequence analysis and Fourier-transform infrared (FT-IR) spectroscopy. Microbiology 148, 1523–1532.
    [Google Scholar]
  40. Paananen, A., Mikkola, R., Sareneva, T., Matikainen, S., Hess, M., Andersson, M., Julkunen, I., Salkinoja-Salonen, M. S. & Timonen, T. ( 2002; ). Inhibition of human natural killer cell activity by cereulide, an emetic toxin from Bacillus cereus. Clin Exp Immunol 129, 420–428.[CrossRef]
    [Google Scholar]
  41. Parry, J. M., Turnbull, P. C. B. & Gibson, J. R. ( 1983; ). A Colour Atlas of Bacillus Species. Wolfe Medical Publications Ltd.
  42. Pirttijärvi, T. S., Andersson, M. A., Scoging, A. C. & Salkinoja-Salonen, M. S. ( 1999; ). Evaluation of methods for recognizing strains of the Bacillus cereus group with food poisoning potential among industrial and environmental contaminants. Syst Appl Microbiol 22, 133–144.[CrossRef]
    [Google Scholar]
  43. Price, L. B., High-Jones, M. E., Jackson, P. & Keim, P. ( 1999; ). Natural genetic diversity in the protective antigen gene of Bacillus anthracis. J Bacteriol 181, 2358–2362.
    [Google Scholar]
  44. Priest, F. G., Goodfellow, M. & Todd, C. ( 1988; ). A frequency matrix for probabilistical identification of some bacilli. J Gen Microbiol 134, 1847–1882.
    [Google Scholar]
  45. Priest, F. G., Barker, M., Baillie, L. W. J., Holmes, E. C. & Maiden, M. J. C. ( 2004; ). Population structure and evolution of the Bacillus cereus group. J Bacteriol 186, 7959–7970.[CrossRef]
    [Google Scholar]
  46. Prüß, B. M., Dietrich, R., Nibler, B., Märtelbauer, E. & Scherer, S. ( 1999; ). The hemolytical enterotoxin HBL is broadly distributed among species of the Bacillus cereus group. Appl Environ Bacteriol 65, 5436–5442.
    [Google Scholar]
  47. Shinagawa, K., Konuma, H., Sekita, H. & Sugii, S. ( 1995; ). Emesis of rhesus monkeys induced by intragastric administration with the HEp-2 vacuolation factor (cereulide) produced by Bacillus cereus. FEMS Microbiol Lett 130, 87–90.
    [Google Scholar]
  48. Stackebrandt, E. & Liesack, W. ( 1992; ). The potential of rDNA in identification and diagnostics. In Nonradioactive Labeling and Detection of Biomolecules, pp. 232–239. Edited by C. Kessler. Berlin: Springer.
  49. Stenfors, L. P., Mayr, R., Scherer, S. & Granum, P. E. ( 2002; ). Pathogenic potential of fifty Bacillus weihenstephanensis strains. FEMS Microbiol Lett 215, 47–51.[CrossRef]
    [Google Scholar]
  50. Suerbaum, S., Maynard-Smith, J. M., Bapumia, K., Morelli, G., Smith, N. H., Kunstmann, E., Dyrek, I. & Achtman, M. ( 1998; ). Free recombination within Helicobacter pylori. Proc Natl Acad Sci U S A 95, 12619–12624.[CrossRef]
    [Google Scholar]
  51. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24, 4876–4882.
    [Google Scholar]
  52. Tindall, B. J., Brambilla, E., Steffen, M., Neumann, R., Pukall, R., Kroppenstedt, R. M. & Stackebrandt, E. ( 2000; ). Cultivatable microbial biodiversity: gnawing at the Gordian knot. Environ Microbiol 2, 310–318.[CrossRef]
    [Google Scholar]
  53. Turnbull, P. C. B. & Kramer, J. M. ( 1991; ). Bacillus. In Manual of Clinical Microbiology, 5th edn, pp. 296–303. Edited by A. Balows, W. J. Hausler, K. L. Hermann, H. D. Isenberg & H. J. Shadomy. Washington, DC: American Society for Microbiology.
  54. Van de Peer, Y. & De Wachter, R. ( 1997; ). Construction of evolutionary distance trees with treecon for Windows: accounting for variation in nucleotide substitution rate among sites. Comput Appl Biosci 13, 227–230.
    [Google Scholar]
  55. Van Leeuwen, W., Sijmons, M., Sluijs, J., Verbrugh, H. & van Belkum, A. ( 1996; ). On the nature and use of randomly amplified DNA from Staphylococcus aureus. J Clin Microbiol 34, 2770–2777.
    [Google Scholar]
  56. Vilas-Boas, G., Sanchis, V., Lereclus, D., Lemos, M. V. F. & Bourguet, D. ( 2002; ). Genetic differences between sympatric populations of Bacillus cereus and Bacillus thuringiensis. Appl Environ Microbiol 68, 1414–1424.[CrossRef]
    [Google Scholar]
  57. Ward, J. H. ( 1963; ). Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58, 236–244.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27607-0
Loading
/content/journal/micro/10.1099/mic.0.27607-0
Loading

Data & Media loading...

Supplements

vol. , part 1, pp. 183-197

A PDF file with a table giving full details of the strains used in this study, together with additional genetic relationship data is available here.



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error