1887

Abstract

The operon involved in sulphur metabolism in is positively regulated by the LysR-type protein CmbR. Transcription from the promoter is activated when concentrations of methionine and cysteine in the growth medium are low. The promoter region contains two direct and three inverted repeats. Deletion analysis indicated that direct repeat 2 (DR2) is required for activation of the promoter by CmbR. Gel mobility shift assays confirmed that CmbR binds to a 407 bp DNA fragment containing the promoter. This binding was stimulated by -acetyl--serine. Competition experiments with deletion variants of the promoter showed that CmbR binding only occurred with fragments containing an intact DR2, confirming that DR2 is the CmbR binding site within the promoter.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27411-0
2005-02-01
2019-11-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/2/mic1510439.html?itemId=/content/journal/micro/10.1099/mic.0.27411-0&mimeType=html&fmt=ahah

References

  1. Alting, A. C., Engels, W. J. M., van Schalkwijk, S. & Exterkate, F. A. ( 1995; ). Purification and characterisation of cystathionine β-lyase from Lactococcus lactis subsp. cremoris B78 and its possible role in flavor development in cheese. Appl Environ Microbiol 61, 4037–4042.
    [Google Scholar]
  2. Auger, S., Yuen, W. H., Danchin, A. & Martin-Verstraete, I. ( 2002; ). The metIC operon involved in methionine biosynthesis in Bacillus subtilis is controlled by transcription antitermination. Microbiology 148, 507–518.
    [Google Scholar]
  3. Bolotin, A., Wincker, P., Mauger, S., Jaillon, O., Malarme, K., Weissenbach, J., Ehrlich, S. D. & Sorokin, A. ( 2001; ). The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res 11, 731–753.[CrossRef]
    [Google Scholar]
  4. Bradford, M. M. ( 1976; ). A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein-dye binding. Anal Biochem 72, 248–254.[CrossRef]
    [Google Scholar]
  5. Byerly, K. A., Urbanowski, M. L. & Stauffer, G. V. ( 1991; ). The MetR binding site in the Salmonella typhimurium metH gene: DNA sequence constraints on activation. J Bacteriol 173, 3547–3553.
    [Google Scholar]
  6. Chang, M. & Crawford, I. P. ( 1991; ). In vitro determination of the effect of indoleglycerol phosphate on the interaction of purified TrpI protein with its DNA-binding sites. J Bacteriol 173, 1590–1597.
    [Google Scholar]
  7. Cho, K. & Winans, S. C. ( 1993; ). Altered-function mutations in the Agrobacterium tumefaciens OccR protein and in an OccR-regulated promoter. J Bacteriol 175, 7715–7719.
    [Google Scholar]
  8. Chopin, A. ( 1993; ). Organization and regulation of genes for amino acid biosynthesis in lactic acid bacteria. FEMS Microbiol Rev 12, 21–37.[CrossRef]
    [Google Scholar]
  9. Cowan, J. M., Urbanowski, M. L., Talmi, M. & Stauffer, G. V. ( 1993; ). Regulation of the Salmonella typhimurium metF gene by the MetR protein. J Bacteriol 175, 5862–5866.
    [Google Scholar]
  10. de Vos, W. M., Vos, P., de Haard, H. & Boerrigter, I. ( 1989; ). Cloning and expression of the Lactococcus lactis subsp. cremoris SK11 gene encoding an extracellular serine proteinase. Gene 85, 169–176.[CrossRef]
    [Google Scholar]
  11. Fernández, M., van Doesburg, W., Rutten, G. A., Marugg, J. D., Alting, A. C., van Kranenburg, R. & Kuipers, O. P. ( 2000; ). Molecular and functional analysis of the metC gene of Lactococcus lactis, encoding cystathionine β-lyase. Appl Environ Microbiol 66, 42–48.[CrossRef]
    [Google Scholar]
  12. Fernández, M., Kleerebezem, M., Kuipers, O. P., Siezen, R. J. & van Kranenburg, R. ( 2002; ). Regulation of the metC–cysK operon involved in sulfur metabolism in Lactococcus lactis. J Bacteriol 184, 82–90.[CrossRef]
    [Google Scholar]
  13. Fisher, R. F. & Long, S. R. ( 1993; ). Interactions of NodD at the nod box: NodD binds to two distinct sites on the same face of the helix and induces a bend in the DNA. J Mol Biol 233, 336–348.[CrossRef]
    [Google Scholar]
  14. Goethals, K., Van Montagu, M. & Holsters, M. ( 1992; ). Conserved motifs in a divergent nod box of Azorhizobium caulinodans ORS571 reveal a common structure in promoters regulated by LysR-type proteins. Proc Natl Acad Sci U S A 89, 1646–1650.[CrossRef]
    [Google Scholar]
  15. Gottschalk, G. ( 1988; ). Bacterial Metabolism, 2nd edn, pp. 46. New York: Springer.
  16. Grundy, F. J. & Henkin, T. M. ( 1998; ). The S box regulon: a new global transcription termination system for methionine and cysteine biosynthesis genes in Gram-positive bacteria. Mol Microbiol 30, 737–749.[CrossRef]
    [Google Scholar]
  17. Guillouard, I., Auger, S., Hullo, M.-F., Chetouani, F., Danchin, A. & Martin-Verstraete, I. ( 2002; ). Identification of Bacillus subtilis CysL, a regulator of the cysJI operon, which encodes sulfite reductase. J Bacteriol 184, 4681–4689.[CrossRef]
    [Google Scholar]
  18. Hanahan, D. ( 1983; ). Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166, 557–580.[CrossRef]
    [Google Scholar]
  19. Henikoff, S., Haughn, G. W., Calvo, J. M. & Wallace, J. C. ( 1988; ). A large family of bacterial activator proteins. Proc Natl Acad Sci U S A 85, 6602–6606.[CrossRef]
    [Google Scholar]
  20. Hryniewicz, M. M. & Kredich, N. M. ( 1995; ). Hydroxyl radical footprints and half-site arrangements of binding sites for the CysB transcriptional activator of Salmonella typhimurium. J Bacteriol 177, 2343–2353.
    [Google Scholar]
  21. Huang, J. & Schell, M. A. ( 1991; ). In vivo interactions of the NahR transcriptional activator with its target sequences. J Biol Chem 266, 10830–10838.
    [Google Scholar]
  22. Jovanovic, M., Lilic, M., Savic, D. J. & Jovanovic, G. ( 2003; ). The Lys-type tanscriptional regulator CysB controls the repression of hslJ transcription in Escherichia coli. Microbiology 149, 3449–3459.[CrossRef]
    [Google Scholar]
  23. Kredich, N. M. ( 1996; ). Biosynthesis of cysteine. In Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd edn, pp. 514–527. Edited by F. C. Neidhart and others. Washington, DC: American Society for Microbiology.
  24. Kuipers, O. P., Beerthuyzen, M. M., de Ruyter, P. G. G. A., Luesink, E. J. & de Vos, W. M. ( 1995; ). Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction. J Biol Chem 270, 27299–27304.[CrossRef]
    [Google Scholar]
  25. Kuipers, O. P., de Ruyter, P. G. G. A., Kleerebezem, M. & de Vos, W. M. ( 1998; ). Quorum sensing-controlled gene expression in lactic acid bacteria. J Biotechnol 64, 15–21.[CrossRef]
    [Google Scholar]
  26. Lindquist, S., Lindberg, F. & Normark, S. ( 1989; ). Binding of the Citrobacter freundii AmpR regulator to a single DNA site provides both autoregulation and activation of the inducible ampC β-lactamase gene. J Bacteriol 171, 3746–3753.
    [Google Scholar]
  27. Lochowska, A., Iwanicka-Nowicka, R., Plochocka, D. & Hryniewicz, M. M. ( 2001; ). Functional dissection of the LysR-type CysB transcriptional regulator. Regions important for DNA binding, inducer response, oligomerization, and positive control. J Biol Chem 276, 2098–2107.[CrossRef]
    [Google Scholar]
  28. Looijesteijn, P. J. & Hugenholtz, J. ( 1999; ). Uncoupling of growth and exopolysaccharide production by Lactococcus lactis subsp. cremoris NIZO B40 and optimisation of its synthesis. J Biosci Bieng 88, 178–182.[CrossRef]
    [Google Scholar]
  29. Lorenz, E. & Stauffer, G. V. ( 1996; ). MetR-mediated repression of the glyA gene in Escherichia coli. FEMS Microbiol Lett 144, 229–233.[CrossRef]
    [Google Scholar]
  30. Mansilla, M. C., Albanesi, D. & de Mendoza, D. ( 2000; ). Transcriptional control of the sulfur-regulated cysH operon, containing genes involved in l-cysteine biosynthesis in Bacillus subtilis. J Bacteriol 182, 5885–5892.[CrossRef]
    [Google Scholar]
  31. Mares, R., Urbanowski, M. L. & Stauffer, G. V. ( 1992; ). Regulation of the Salmonella typhimurium metA gene by the MetR protein and homocysteine. J Bacteriol 174, 390–397.
    [Google Scholar]
  32. Martin, K., Huo, L. & Schleif, R. F. ( 1986; ). The DNA loop model for ara repression: AraC protein occupies the proposed loop sites in vivo and repression-negative mutations lie in these same sites. Proc Natl Acad Sci U S A 83, 3654–3658.[CrossRef]
    [Google Scholar]
  33. Maxon, M. E., Redfield, B., Cai, X. Y., Shoeman, R., Fujita, K., Fisher, W., Stauffer, G., Weissbach, H. & Brot, N. ( 1989; ). Regulation of methionine synthesis in Escherichia coli: effect of the MetR protein on the expression of the metE and metR genes. Proc Natl Acad Sci U S A 86, 85–89.[CrossRef]
    [Google Scholar]
  34. Monroe, R. S., Ostrowski, J., Hryniewisz, M. & Kredich, N. M. ( 1990; ). In vitro interactions of CysB protein with the cysK and cysJIH promoter regions of Salmonella typhimurium. J Bacterol 172, 6919–6929.
    [Google Scholar]
  35. Ostrowski, J. & Kredich, N. M. ( 1989; ). Molecular characterisation of the cysJIH promoters of Salmonella typhimurium and Escherichia coli: regulation by CysB protein and N-acetyl-l-serine. J Bacteriol 171, 130–140.
    [Google Scholar]
  36. Ostrowski, J., Jagura-Burdzy, G. & Kredich, N. M. ( 1987; ). DNA sequences of the cysB regions of Salmonella typhimurium and Escherichia coli. J Biol Chem 262, 5999–6005.
    [Google Scholar]
  37. Platteeuw, C., Simons, G. & de Vos, W. M. ( 1994; ). Use of the Escherichia coli β-glucuronidase (gusA) gene as a reporter gene for analysing promoters in lactic acid bacteria. Appl Environ Microbiol 60, 587–593.
    [Google Scholar]
  38. Saint-Girons, I., Parsot, C., Zakin, M. M., Barzu, O. & Cohen, G. N. ( 1988; ). Methionine biosynthesis in Enterobacteriaceae: biochemical, regulatory, and evolutionary aspects. Crit Rev Biochem 23, S1–S42.[CrossRef]
    [Google Scholar]
  39. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning, a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  40. Schell, M. A. ( 1993; ). Molecular biology of the LysR family of transcriptional regulators. Annu Rev Microbiol 47, 597–566.[CrossRef]
    [Google Scholar]
  41. Simon, D. & Chopin, A. ( 1988; ). Construction of a vector plasmid family and its use for molecular cloning in Streptococcus lactis. Biochimie 70, 559–566.[CrossRef]
    [Google Scholar]
  42. Towbin, H., Staehelin, T. & Gordon, J. ( 1979; ). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76, 4350–4354.[CrossRef]
    [Google Scholar]
  43. Urbanowski, M. L. & Stauffer, G. V. ( 1989; ). Genetic and biochemical analysis of the metR activator-binding site in the metE metR control region of Salmonella typhimurium. J Bacteriol 171, 5620–5629.
    [Google Scholar]
  44. Wang, S.-P. & Stacey, G. ( 1991; ). Studies of the Bradyrhizobium japonicum nodD1 promoter: a repeated structure for the nod box. J Bacteriol 173, 3356–3365.
    [Google Scholar]
  45. Watson, J. D., Hopkins, N. H., Roberts, J. W., Steitz, J. A. & Weiner, A. M. ( 1988; ). Molecular Biology of the Gene, 4th edn, pp. 372–373. Menlo Park, CA: Benjamin/Cummings Publishing Co.
  46. Weissbach, H. & Brot, N. ( 1991; ). Regulation of methionine synthesis in Escherichia coli. Mol Microbiol 5, 1593–1597.[CrossRef]
    [Google Scholar]
  47. Wek, R. C. & Hatfield, G. W. ( 1988; ). Transcriptional activation at adjacent operators in the divergent-overlapping ilvY and ilvC promoters of Escherichia coli. J Mol Biol 203, 643–663.[CrossRef]
    [Google Scholar]
  48. Wray, W. R., Boulikas, R., Wray, V. P. & Hancock, R. ( 1981; ). Silver staining of proteins in polyacrylamide gels. Anal Biochem 118, 197–203.[CrossRef]
    [Google Scholar]
  49. Wu, W. F., Urbanowski, M. L. & Stauffer, G. V. ( 1995; ). Characterization of a second MetR-binding site in the metE metR regulatory region of Salmonella typhimurium. J Bacteriol 177, 1834–1839.
    [Google Scholar]
  50. Yanisch-Perron, C., Vieira, J. & Messing, J. ( 1985; ). Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC18 vectors. Gene 33, 103–119.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27411-0
Loading
/content/journal/micro/10.1099/mic.0.27411-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error