- Volume 151, Issue 2, 2005
Volume 151, Issue 2, 2005
- Microbiology Comment
-
- Cell And Developmental Biology
-
-
-
Analysis of type IV pilus and its associated motility in Myxococcus xanthus using an antibody reactive with native pilin and pili
More LessMyxococcus xanthus possesses a social gliding motility that requires type IV pili (TFP). According to the current model, M. xanthus pili attach to an external substrate and retract, pulling the cell body forward along their long axis. By analogy with the situation in other bacteria employing TFP-dependent motility, M. xanthus pili have been assumed to be composed of pilin (PilA) subunits, but this has not previously been confirmed. The first 28 amino acids of the M. xanthus PilA protein share extensive homology with the N-terminal oligomerization domain of pilins in other bacterial species. To facilitate purification, the authors engineered a truncated form of M. xanthus PilA lacking the first 28 amino acids and purified this protein in soluble form. Polyclonal antibody generated against this protein was reactive with native pilin and pili. Using this antibody, it was confirmed that TFP of M. xanthus are indeed composed of PilA, and that TFP are located unipolarly and required for social gliding motility via retraction. Using tethering as well as motility assays, details of pili function in M. xanthus social motility were further examined.
-
-
- Biochemistry And Molecular Biology
-
-
-
Genome-wide analysis of temporally regulated and compartment-specific gene expression in sporulating cells of Bacillus subtilis
More LessTemporal and compartment-specific control of gene expression during sporulation in Bacillus subtilis is governed by a cascade of four RNA polymerase subunits. σ F in the prespore and σ E in the mother cell control early stages of development, and are replaced at later stages by σ G and σ K, respectively. Ultimately, a comprehensive description of the molecular mechanisms underlying spore morphogenesis requires the knowledge of all the intervening genes and their assignment to specific regulons. Here, in an extension of earlier work, DNA macroarrays have been used, and members of the four compartment-specific sporulation regulons have been identified. Genes were identified and grouped based on: i) their temporal expression profile and ii) the use of mutants for each of the four sigma factors and a bofA allele, which allows σ K activation in the absence of σ G. As a further test, artificial production of active alleles of the sigma factors in non-sporulating cells was employed. A total of 439 genes were found, including previously characterized genes whose transcription is induced during sporulation: 55 in the σ F regulon, 154 σ E-governed genes, 113 σ G-dependent genes, and 132 genes under σ K control. The results strengthen the view that the activities of σ F, σ E, σ G and σ K are largely compartmentalized, both temporally as well as spatially, and that the major vegetative sigma factor (σ A) is active throughout sporulation. The results provide a dynamic picture of the changes in the overall pattern of gene expression in the two compartments of the sporulating cell, and offer insight into the roles of the prespore and the mother cell at different times of spore morphogenesis.
-
-
-
-
Plasmid p256 from Lactobacillus plantarum represents a new type of replicon in lactic acid bacteria, and contains a toxin–antitoxin-like plasmid maintenance system
More LessLactobacillus plantarum NC7 harbours a single 7·2 kb plasmid called p256. This report describes the complete nucleotide sequence and annotation of p256, as well as the identification of the minimal replicon of the plasmid. Based on sequence features in the unusually small (0·7 kb) minimal replicon, and the absence of a gene for a replication-relevant protein, p256 seems to represent a hitherto unknown type of theta replicon in lactic acid bacteria (LAB), with a relatively low copy-number. In addition, a putative toxin–antitoxin (TA) locus was identified. Experiments with variants of p256 indicated that the TA system was involved in plasmid maintenance. Furthermore, controlled expression of the TA genes stabilized vectors derived from the p256 replicon. To the authors' knowledge, this is the first time a TA locus with a demonstrated plasmid maintenance function has been identified in LAB. Transformation of several LAB with plasmids derived from p256 indicated that it has a narrow host range. Several effective expression vectors based on the p256 replicon have been constructed.
-
-
-
Protease susceptibility of the Caulobacter crescentus flagellar hook–basal body: a possible mechanism of flagellar ejection during cell differentiation
More LessWhen motile swarmer cells of Caulobacter crescentus differentiate into sessile stalked cells, the flagellum is ejected. To elucidate the molecular mechanism of the flagellar ejection, flagellar hook–basal body (HBB) complexes from C. crescentus were purified and characterized. The purified HBBs were less stable against acidic pH or protease treatment than HBBs of Salmonella typhimurium, supporting the view that flagellar ejection from C. crescentus is initiated by destruction of the fragile basal structures. In addition, protease treatment of the purified flagella resulted in the specific digestion of the MS ring complex, revealing for the first time the intact structure of the whole rod.
-
-
-
Molecular characterization of the CmbR activator-binding site in the metC–cysK promoter region in Lactococcus lactis
The metC–cysK operon involved in sulphur metabolism in Lactococcus lactis is positively regulated by the LysR-type protein CmbR. Transcription from the metC promoter is activated when concentrations of methionine and cysteine in the growth medium are low. The metC promoter region contains two direct and three inverted repeats. Deletion analysis indicated that direct repeat 2 (DR2) is required for activation of the metC promoter by CmbR. Gel mobility shift assays confirmed that CmbR binds to a 407 bp DNA fragment containing the metC promoter. This binding was stimulated by O-acetyl-l-serine. Competition experiments with deletion variants of the metC promoter showed that CmbR binding only occurred with fragments containing an intact DR2, confirming that DR2 is the CmbR binding site within the metC promoter.
-
-
-
Osmotic shrinkage of cells of Synechocystis sp. PCC 6803 by water efflux via aquaporins regulates osmostress-inducible gene expression
Osmotic stress causes water molecules to efflux from cells through the cytoplasmic membrane. This study reveals that targeted mutation of the aqpZ gene, encoding an aquaporin water channel protein, in the cyanobacterium Synechocystis sp. PCC 6803 prevents the osmotic shrinkage of cells, suggesting that it is the water channel rather than the lipid bilayer that is primarily responsible for water transition through the membrane of this organism. The observations suggest that the aquaporin-mediated shrinkage of the Synechocystis cells plays an important role in changes of gene expression in response to hyperosmotic stress.
-
-
-
A new subfamily of fungal subtilases: structural and functional analysis of a Pleurotus ostreatus member
More LessPleurotus ostreatus produces several extracellular proteases which are believed to be involved in the regulation of the ligninolytic activities of this fungus. Recently, purification and characterization of the most abundant P. ostreatus extracellular protease (PoSl) have been reported. The sequence of the posl gene and of the corresponding cDNA has been determined, allowing the identification of its pre- and pro-sequences. A mature protein sequence has been verified by mass spectrometry mapping, the N-glycosylation sites have been identified and the glycosidic moieties characterized. Mature PoSl shows a cleaved peptide bond in the C-terminal region, which remains associated with the catalytic domain in a non-covalent complex. Reported results indicate that this enzyme is involved in the activation of other P. ostreatus secreted proteases, thus suggesting its leading role in cascade activation mechanisms. Analyses of the PoSl sequence by homology search resulted in the identification of a DNA sequence encoding a new protease, homologous to PoSl, in the Phanerochaete chrysosporium genome. A new subgroup of subtilisin-like proteases, belonging to the pyrolysin family, has been defined, which includes proteases from ascomycete and basidiomycete fungi.
-
-
-
The mechanism of upstream activation in the rrnB operon of Mycobacterium smegmatis is different from the Escherichia coli paradigm
More LessMycobacteria are slow-growing bacteria with a generation time of from 2–3 h up to several weeks. Consistent with the low growth rate, mycobacterial species have a maximum of two rRNA operons, rrnA and rrnB. The rrnA operon is present in all mycobacteria and has between two and five promoters, depending on species, whereas the rrnB operon, with a single promoter, is only found in some of the faster-growing species. The promoter region of the rrnB operon of a typical fast grower, Mycobacterium smegmatis, was investigated. By using lacZ reporter gene fusions it was demonstrated that the rrnB operon contains a highly activating region upstream of the core promoter, comparable to other bacterial rrn operons. However, the results suggest that, unlike the situation in, for example, Escherichia coli, the activating mechanism is solely factor dependent, and that no UP element is involved.
-
- Biodiversity And Evolution
-
-
-
Diversity within the Campylobacter jejuni type I restriction–modification loci
The type I restriction–modification (hsd) systems of 73 Campylobacter jejuni strains were characterized according to their DNA and amino acid sequences, and/or gene organization. A number of new genes were identified which are not present in the sequenced strain NCTC 11168. The closely related organism Helicobacter pylori has three type I systems; however, no evidence was found that C. jejuni strains contain multiple type I systems, although hsd loci are present in at least two different chromosomal locations. Also, unlike H. pylori, intervening ORFs are present, in some strains, between hsdR and hsdS and between hsdS and hsdM. No definitive function can be ascribed to these ORFs, designated here as rloA–H (R-linked ORF) and mloA–B (M-linked ORF). Based on parsimony analysis of amino acid sequences to assess character relatedness, the C. jejuni type I R–M systems are assigned to one of three families: ‘IAB’, ‘IC’ or ‘IF’. This study confirms that HsdM proteins within a family are highly conserved but share little homology with HsdM proteins from other families. The ‘IC’ hsd loci are >99 % identical at the nucleotide level, as are the ‘IF’ hsd loci. Additionally, whereas the nucleotide sequences of the ‘IAB’ hsdR and hsdM genes show a high degree of similarity, the nucleotide sequences of the ‘IAB’ hsdS and rlo genes vary considerably. This diversity suggests that recombination between ‘IAB’ hsd loci would lead not only to new hsdS alleles but also to the exchange of rlo genes; five C. jejuni hsd loci are presumably the result of such recombination. The importance of these findings with regard to the evolution of C. jejuni type I R–M systems is discussed.
-
-
-
-
Suppression subtractive hybridization as a basis to assess Mycoplasma agalactiae and Mycoplasma bovis genomic diversity and species-specific sequences
More LessThe phylogenically related Mycoplasma agalactiae and Mycoplasma bovis species are two ruminant pathogens difficult to differentiate and for which a limited amount of sequence data are available. To assess the degree of genomic diversity existing between and within these mycoplasma species, sets of DNA fragments specific for M. bovis type-strain PG45 or for M. agalactiae type-strain PG2 were isolated by suppression subtractive hybridization and used as probes on a panel of M. agalactiae and M. bovis field isolates. Results indicated that approximately 70 % of the DNA fragments specific to one or the other type strain are represented in all field isolates of the corresponding species. Only one M. bovis isolate, which was first classified as M. agalactiae, reacted with 15 % of the PG2-specific probes, while several M. agalactiae isolates reacted with 15 % of the PG45-specific probes. Sequence analyses indicated that most of the genomic diversity observed within one species is related to ORFs with (i) no homologies to proteins recorded in the databases or (ii) homologies to proteins encoded by restriction modification systems. Reminiscent of gene transfer as a means for genomic diversity, a PG45-specific DNA fragment with significant homologies to a central protein of an integrative conjugative element of Mycoplasma fermentans (ICEF) was found in most M. bovis field isolates and in a few M. agalactiae isolates. Finally, sequences encoding part of DNA polymerase III were found in both sets of M. agalactiae- and M. bovis-specific DNA fragments and were used to design a species-specific PCR assay for the identification and differentiation of M. agalactiae and M. bovis.
-
- Environmental Microbiology
-
-
-
Identification of large linear plasmids in Arthrobacter spp. encoding the degradation of quinaldine to anthranilate
More LessArthrobacter nitroguajacolicus Rü61a, which utilizes quinaldine as sole source of carbon and energy, was shown to contain a conjugative linear plasmid of approximately 110 kb, named pAL1. It exhibits similarities with other linear plasmids from Actinomycetales in that it has proteins covalently attached to its 5′ ends. Southern hybridization with probes for the genes encoding quinaldine 4-oxidase and N-acetylanthranilate amidase indicated that pAL1 contains the gene cluster encoding the degradation of quinaldine to anthranilate. A mutant of strain Rü61a that had lost pAL1 indeed could not convert quinaldine, but was still able to grow on anthranilate. Conjugative transfer of pAL1 to the plasmid-less mutant of strain Rü61a and to Arthrobacter nicotinovorans DSM 420 (pAO1) occurred at frequencies of 5·4×10−4 and 2·0×10−4 per recipient, respectively, and conferred the ability to utilize quinaldine. Five other quinaldine-degrading Gram-positive strains were isolated from soil samples; 16S rDNA sequence analysis suggested the closest relationship to different Arthrobacter species. Except for strain K2-29, all isolates contained a pAL1-like linear plasmid carrying genes encoding quinaldine conversion. A 478 bp fragment that on pAL1 represents an intergenic region showed 100 % sequence identity in all isolates harbouring a pAL1-like plasmid, suggesting horizontal dissemination of the linear plasmid among the genus Arthrobacter.
-
-
- Genes And Genomes
-
-
-
Variation in gene expression patterns as the insect pathogen Metarhizium anisopliae adapts to different host cuticles or nutrient deprivation in vitro
More LessMetarhizium anisopliae infects a broad range of insects by direct penetration of the host cuticle. To explore the molecular basis of this process, its gene expression responses to diverse insect cuticles were surveyed, using cDNA microarrays constructed from an expressed sequence tag (EST) clone collection of 837 genes. During growth in culture containing caterpillar cuticle (Manduca sexta), M. anisopliae upregulated 273 genes, representing a broad spectrum of biological functions, including cuticle-degradation (e.g. proteases), amino acid/peptide transport and transcription regulation. There were also many genes of unknown function. The 287 down-regulated genes were also distinctive, and included a large set of ribosomal protein genes. The response to nutrient deprivation partially overlapped with the response to Man. sexta cuticle, but unique expression patterns in response to cuticles from another caterpillar (Lymantria dispar), a cockroach (Blaberus giganteus) and a beetle (Popilla japonica) indicate that the pathogen can respond in a precise and specialized way to specific conditions. The subtilisins provided an example of a large gene family in which differences in regulation could potentially allow virulence determinants to target different hosts and stages of infection. Comparisons between M. anisopliae and published data on Trichoderma reesei and Saccharomyces cerevisiae identified differences in the regulation of glycolysis-related genes and citric acid cycle/oxidative phosphorylation functions. In particular, M. anisopliae has multiple forms of several catabolic enzymes that are differentially regulated in response to sugar levels. These may increase the flexibility of M. anisopliae as it responds to nutritional changes in its environment.
-
-
-
-
Characterization of the flexible genome complement of the commensal Escherichia coli strain A0 34/86 (O83 : K24 : H31)
Colonization by the commensal Escherichia coli strain A0 34/86 (O83 : K24 : H31) has proved to be safe and efficient in the prophylaxis and treatment of nosocomial infections and diarrhoea of preterm and newborn infants in Czech paediatric clinics over the past three decades. In searching for traits contributing to this beneficial effect related to the gut colonization capacity of the strain, the authors have analysed its genome by DNA–DNA hybridization to E. coli K-12 (MG1655) genomic DNA arrays and to ‘Pathoarrays’, as well as by multiplex PCR, bacterial artificial chromosome (BAC) library cloning and shotgun sequencing. Four hundred and ten E. coli K-12 ORFs were absent from A0 34/86, while 72 out of 456 genes associated with pathogenicity islands of E. coli and Shigella were also detected in E. coli A0 34/86. Furthermore, extraintestinal pathogenic E. coli-related genes involved in iron uptake and adhesion were detected by multiplex PCR, and genes encoding the HlyA and cytotoxic necrotizing factor toxins, together with 21 genes of the uropathogenic E. coli 536 pathogenicity island II, were identified by analysis of 2304 shotgun and 1344 BAC clone sequences of A0 34/86 DNA. Multiple sequence comparisons identified 31 kb of DNA specific for E. coli A0 34/86; some of the genes carried by this DNA may prove to be implicated in the colonization capacity of the strain, enabling it to outcompete pathogens. Among 100 examined BAC clones roughly covering the A0 34/86 genome, one reproducibly conferred on the laboratory strain DH10B an enhanced capacity to persist in the intestine of newborn piglets. Sequencing revealed that this BAC clone carried gene clusters encoding gluconate and mannonate metabolism, adhesion (fim), invasion (ibe) and restriction/modification functions. Hence, the genome of this clinically safe and highly efficient colonizer strain appears to harbour many ‘virulence-associated’ genes. These results highlight the thin line between bacterial ‘virulence’ and ‘fitness' or ‘colonization’ factors, and question the definition of enterobacterial virulence factors.
-
-
-
A new insertion sequence, IS14999, from Corynebacterium glutamicum
More LessA new insertion sequence from Corynebacterium glutamicum ATCC 14999 was isolated and characterized. This IS element, designated IS14999, comprised a 1149 bp nucleotide sequence with 22 bp imperfect terminal inverted repeats. IS14999 carries a single open reading frame of 345 amino acids encoding a putative transposase that appears to have partial homology to IS642, an IS630/Tc1 superfamily element, at the C-terminal region in the amino acid sequence. This indicated that IS14999 belonged to the IS630/Tc1 superfamily, which was first identified in C. glutamicum. IS14999 has a unique distance of 38 amino acid residues between the second and third amino acids in the DDE motif, which is well known as the catalytic centre of transposase. This suggested that IS14999 constituted a new subfamily of the IS630/Tc1 superfamily. A phylogenetic tree constructed on the basis of amino acid sequences of transposases revealed that this new transposable element was more similar to eukaryotic Tc1/mariner family elements than to prokaryotic IS630 family elements. Added to the fact that IS14999 was present in only a few C. glutamicum strains, this implies that IS14999 was probably acquired by a recent lateral transfer event from eukaryotic cells. Analysis of the insertion site in C. glutamicum R revealed that IS14999 appeared to transpose at random and always caused a target duplication of a 5′-TA-3′ dinucleotide upon insertion, like the other IS630/Tc1 family elements. These findings indicated that IS14999 could be a powerful tool for genetic manipulation of corynebacteria and related species.
-
-
-
Concordant evolution of trichothecene 3-O-acetyltransferase and an rDNA species phylogeny of trichothecene-producing and non-producing fusaria and other ascomycetous fungi
The cereal pathogen Fusarium graminearum species complex (e.g. Fusarium asiaticum, previously referred to as F. graminearum lineage 6) produces the mycotoxin trichothecene in infected grains. The fungus has a gene for self-defence, Tri101, which is responsible for 3-O-acetylation of the trichothecene skeleton in the biosynthetic pathway. Recently, trichothecene non-producers Fusarium oxysporum and Fusarium fujikuroi (teleomorph Gibberella fujikuroi) were shown to have both functional (Tri201) and non-functional (pseudo-Tri101) trichothecene 3-O-acetyltransferase genes in their genome. To gain insight into the evolution of the trichothecene genes in Gibberella species, the authors examined whether or not other (pseudo-)biosynthesis-related genes are found near Tri201. However, sequence analysis of a 12 kb region containing Tri201 did not result in identification of additional trichothecene (pseudo-)genes in F. oxysporum. In a further attempt to find other trichothecene (pseudo-)genes from the non-producer, the authors examined whether or not the non-trichothecene genes flanking the ends of the core trichothecene gene cluster (i.e. the Tri5 cluster) comprise a region of synteny in Gibberella species. However, it was not possible to isolate trichothecene (pseudo-)genes from F. oxysporum (in addition to the previously identified pseudo-Tri101), because synteny was not observed for this region in F. asiaticum and F. oxysporum. In contrast to this unsuccessful identification of additional trichothecene (pseudo-)genes in the non-producer, a functional trichothecene 3-O-acetyltransferase gene could be identified in fusaria other than Gibberella: Fusarium decemcellulare and Fusarium solani; and in an ascomycete from a different fungal genus, Magnaporthe grisea. Together with the recent functional identification of Saccharomyces cerevisiae ScAYT1, these results are suggestive of a different evolutionary origin for the trichothecene 3-O-acetyltransferase gene from other biosynthesis pathway genes. The phylogeny of the 3-O-acetyltransferase was mostly concordant with the rDNA species phylogeny of these ascomycetous fungi.
-
-
-
Genetic analysis of the β-lactamases of Mycobacterium tuberculosis and Mycobacterium smegmatis and susceptibility to β-lactam antibiotics
More LessMycobacteria produce β-lactamases and are intrinsically resistant to β-lactam antibiotics. In addition to the β-lactamases, cell envelope permeability and variations in certain peptidoglycan biosynthetic enzymes are believed to contribute to β-lactam resistance in these organisms. To allow the study of these additional mechanisms, mutants of the major β-lactamases, BlaC and BlaS, were generated in the pathogenic Mycobacterium tuberculosis strain H37Rv and the model organism Mycobacterium smegmatis strain PM274. The mutants M. tuberculosis PM638 (ΔblaC1) and M. smegmatis PM759 (ΔblaS1) showed an increase in susceptibility to β-lactam antibiotics, as determined by disc diffusion and minimal inhibitory concentration (MIC) assays. The susceptibility of the mutants, as assayed by disc diffusion tests, to penicillin-type β-lactam antibiotics was affected most, compared to the cephalosporin-type β-lactam antibiotics. The M. tuberculosis mutant had no detectable β-lactamase activity, while the M. smegmatis mutant had a residual type 1 β-lactamase activity. We identified a gene, blaE, encoding a putative cephalosporinase in M. smegmatis. A double β-lactamase mutant of M. smegmatis, PM976 (ΔblaS1ΔblaE : : res), had no detectable β-lactamase activity, but its susceptibility to β-lactam antibiotics was not significantly different from that of the ΔblaS1 parental strain, PM759. The mutants generated in this study will help determine the contribution of other β-lactam resistance mechanisms in addition to serving as tools to study the biology of peptidoglycan biosynthesis in these organisms.
-
-
-
Transcriptional profiling of Helicobacter pylori Fur- and iron-regulated gene expression
Intracellular iron homeostasis is a necessity for almost all living organisms, since both iron restriction and iron overload can result in cell death. The ferric uptake regulator protein, Fur, controls iron homeostasis in most Gram-negative bacteria. In the human gastric pathogen Helicobacter pylori, Fur is thought to have acquired extra functions to compensate for the relative paucity of regulatory genes. To identify H. pylori genes regulated by iron and Fur, we used DNA array-based transcriptional profiling with RNA isolated from H. pylori 26695 wild-type and fur mutant cells grown in iron-restricted and iron-replete conditions. Sixteen genes encoding proteins involved in metal metabolism, nitrogen metabolism, motility, cell wall synthesis and cofactor synthesis displayed iron-dependent Fur-repressed expression. Conversely, 16 genes encoding proteins involved in iron storage, respiration, energy metabolism, chemotaxis, and oxygen scavenging displayed iron-induced Fur-dependent expression. Several Fur-regulated genes have been previously shown to be essential for acid resistance or gastric colonization in animal models, such as those encoding the hydrogenase and superoxide dismutase enzymes. Overall, there was a partial overlap between the sets of genes regulated by Fur and those previously identified as growth-phase, iron or acid regulated. Regulatory patterns were confirmed for five selected genes using Northern hybridization. In conclusion, H. pylori Fur is a versatile regulator involved in many pathways essential for gastric colonization. These findings further delineate the central role of Fur in regulating the unique capacity of H. pylori to colonize the human stomach.
-
-
-
Point mutations in the DNA- and cNMP-binding domains of the homologue of the cAMP receptor protein (CRP) in Mycobacterium bovis BCG: implications for the inactivation of a global regulator and strain attenuation
The genome of Mycobacterium tuberculosis H37Rv includes a homologue of the CRP/FNR (cAMP receptor protein/fumarate and nitrate reduction regulator) family of transcription regulators encoded by Rv3676. Sequencing of the orthologous gene from attenuated Mycobacterium bovis Bacille Calmette–Guérin (BCG) strains revealed point mutations that affect the putative DNA-binding and cNMP-binding domains of the encoded protein. These mutations are not present in the published sequences of the Rv3676 orthologues in M. bovis, M. tuberculosis or Mycobacterium leprae. An Escherichia coli lacZ reporter system was used to show that the M. tuberculosis Rv3676 protein binds to DNA sites for CRP, but this DNA binding was decreased or abolished with the Rv3676 protein counterparts from BCG strains. The DNA-binding ability of the M. tuberculosis Rv3676 protein was decreased by the introduction of base changes corresponding to the BCG point mutations. Conversely, the DNA binding of the BCG Rv3676 proteins from BCG strains was restored by removing the mutations. These data show that in this reporter system the point mutations present in the Rv3676 orthologue in BCG strains render its function defective (early strains) or abolished (late strains) and suggest that this protein might be naturally defective in M. bovis BCG strains. This raises the possibility that a contributing factor to the attenuation of BCG strains may be an inability of this global regulator to control the expression of genes required for in vivo survival and persistence.
-
- Pathogens And Pathogenicity
-
-
-
Pseudomonas aeruginosa tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum-sensing dependent
The opportunistic human pathogen Pseudomonas aeruginosa is the predominant micro-organism of chronic lung infections in cystic fibrosis (CF) patients. P. aeruginosa colonizes the CF lungs by forming biofilm structures in the alveoli. In the biofilm mode of growth the bacteria are highly tolerant to otherwise lethal doses of antibiotics and are protected from bactericidal activity of polymorphonuclear leukocytes (PMNs). P. aeruginosa controls the expression of many of its virulence factors by means of a cell–cell communication system termed quorum sensing (QS). In the present report it is demonstrated that biofilm bacteria in which QS is blocked either by mutation or by administration of QS inhibitory drugs are sensitive to treatment with tobramycin and H2O2, and are readily phagocytosed by PMNs, in contrast to bacteria with functional QS systems. In contrast to the wild-type, QS-deficient biofilms led to an immediate respiratory-burst activation of the PMNs in vitro. In vivo QS-deficient mutants provoked a higher degree of inflammation. It is suggested that quorum signals and QS-inhibitory drugs play direct and opposite roles in this process. Consequently, the faster and highly efficient clearance of QS-deficient bacteria in vivo is probably a two-sided phenomenon: down regulation of virulence and activation of the innate immune system. These data also suggest that a combination of the action of PMNs and QS inhibitors along with conventional antibiotics would eliminate the biofilm-forming bacteria before a chronic infection is established.
-
-
Volumes and issues
-
Volume 170 (2024)
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)