1887

Abstract

The ability of plant-associated micro-organisms to colonize and compete in the rhizosphere is specially relevant for the biotechnological application of micro-organisms as inoculants. Pseudomonads are one of the best root colonizers and they are widely used in plant-pathogen biocontrol and in soil bioremediation. This study analyses the motility mechanism of the well-known biocontrol strain F113. A 6·5 kb region involved in the flagellar filament synthesis, containing the , , , , and genes and part of the gene, was sequenced and mutants in this region were made. Several non-motile mutants affected in the , and genes, and a mutant with reduced motility properties, were obtained. These mutants were completely displaced from the root tip when competing with the wild-type F113 strain, indicating that the wild-type motility properties are necessary for competitive root colonization. A mutant affected in the gene had longer flagella, but the same motility and colonization properties as the wild-type. However, in rich medium or in the absence of iron limitation, it showed a higher motility, suggesting the possibility of improving competitive root colonization by manipulating the motility processes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27362-0
2004-11-01
2019-11-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/11/mic1503889.html?itemId=/content/journal/micro/10.1099/mic.0.27362-0&mimeType=html&fmt=ahah

References

  1. Arora, S. K., Ritchings, B. W., Almira, E. C., Lory, S. & Ramphal, R. ( 1998; ). The Pseudomonas aeruginosa flagellar cap protein, FliD, is responsible for mucin adhesion. Infect Immun 66, 1000–1007.
    [Google Scholar]
  2. Arora, S. K., Dasgupta, N., Lory, S. & Ramphal, R. ( 2000; ). Identification of two distinct types of flagellar cap proteins, FliD, in Pseudomonas aeruginosa. Infect Immun 68, 1474–1479.[CrossRef]
    [Google Scholar]
  3. Auvray, F., Thomas, J., Fraser, G. M. & Hughes, C. ( 2001; ). Flagellin polymerization control by a cytosolic export chaperone. J Mol Biol 308, 221–229.[CrossRef]
    [Google Scholar]
  4. Bennett, J. C. Q., Thomas, J., Fraser, G. M. & Hughes, C. ( 2001; ). Substrate complexes and domain organization of the Salmonella flagellar export chaperones FlgN and FliT. Mol Microbiol 39, 781–791.[CrossRef]
    [Google Scholar]
  5. Bertani, G. ( 1951; ). Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62, 293–300.
    [Google Scholar]
  6. Bloemberg, G. V., Wijfjes, A. H. M., Lamers, G. E. M., Stuurman, N. & Lugtenberg, B. J. J. ( 2000; ). Simultaneous imaging of Pseudomonas fluorescens WCS365 populations expressing three different autofluorescent proteins in the rhizosphere: new perspectives for studying microbial communities. Mol Plant–Microbe Interact 13, 1170–1176.[CrossRef]
    [Google Scholar]
  7. Brazil, G. M., Kenefick, L., Callanan, M., Haro, A., de Lorenzo, V., Dowling, D. N. & O'Gara, F. ( 1995; ). Construction of a rhizosphere pseudomonad with potential to degrade polychlorinated-biphenyls and detection of bph gene-expression in the rhizosphere. Appl Environ Microbiol 61, 1946–1952.
    [Google Scholar]
  8. Casaz, P., Happel, A., Keithan, J., Read, D. L., Strain, S. R. & Levy, S. B. ( 2001; ). The Pseudomonas fluorescens transcription activator AdnA is required for adhesion and motility. Microbiology 147, 355–361.
    [Google Scholar]
  9. Chin-a-Woeng, T. F. C., Bloemberg, G. V., Mulders, I. H. M., Dekkers, L. C. & Lugtenberg, B. J. J. ( 2000; ). Root colonization by phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391 is essential for biocontrol of tomato foot and root rot. Mol Plant–Microbe Interact 13, 1340–1345.[CrossRef]
    [Google Scholar]
  10. Dasgupta, N., Ferrell, E. P., Kanack, K. J., West, S. E. H. & Ramphal, R. ( 2002; ). fleQ, the gene encoding the major flagellar regulator of Pseudomonas aeruginosa, is sigma(70) dependent and is downregulated by Vfr, a homolog of Escherichia coli cyclic AMP receptor protein. J Bacteriol 184, 5240–5250.[CrossRef]
    [Google Scholar]
  11. Dasgupta, N., Wolfgang, M. C., Goodman, A. L., Arora, S. K., Jyot, J., Lory, S. & Ramphal, R. ( 2003; ). A four-tiered transcriptional regulatory circuit controls flagellar biogenesis in Pseudomonas aeruginosa. Mol Microbiol 50, 809–824.[CrossRef]
    [Google Scholar]
  12. Dekkers, L. C., Phoelich, C. C., Van der Fits, L. & Lugtenberg, B. J. J. ( 1998a; ). A site-specific recombinase is required for competitive root colonization by Pseudomonas fluorescens WCS365. Proc Natl Acad Sci U S A 95, 7051–7056.[CrossRef]
    [Google Scholar]
  13. Dekkers, L. C., Van der Bij, A. J., Mulders, I. H. M., Phoelich, C. C., Wentwoord, R. A. R., Glandorf, D. C. M., Wijffelman, C. A. & Lugtenberg, B. J. J. ( 1998b; ). Role of the O-antigen of lipopolysaccharide, and possible roles of growth rate and of NADH : ubiquinone oxidoreductase (Nuo) in competitive tomato root-tip colonization by Pseudomonas fluorescens WCS365. Mol Plant–Microbe Interact 11, 763–771.[CrossRef]
    [Google Scholar]
  14. de Weert, S., Vermeiren, H., Mulders, I. H. M., Kuiper, I., Hendrickx, N., Bloemberg, G. V., Vanderleyden, J., De Mot, R. & Lugtenberg, B. J. J. ( 2002; ). Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol Plant–Microbe Interact 15, 1173–1180.[CrossRef]
    [Google Scholar]
  15. De Weger, L. A., Van der Vlugt, C. I., Wijfjes, A. H., Bakker, P. A., Schippers, B. & Lugtenberg, B. J. J. ( 1987; ). Flagella of a plant-growth-stimulating Pseudomonas fluorescens strain are required for colonization of potato roots. J Bacteriol 169, 2769–2773.
    [Google Scholar]
  16. Dowling, D. N. & O'Gara, F. ( 1994; ). Metabolites of Pseudomonas involved in the biocontrol of plant-disease. Trends Biotechnol 12, 133–141.[CrossRef]
    [Google Scholar]
  17. Fahraeus, G. ( 1957; ). The infection of clover root hairs by nodule bacteria studied by simple glass technique. J Genet Microbiol 16, 374–381.[CrossRef]
    [Google Scholar]
  18. Figurski, D. H. & Helinski, D. R. ( 1979; ). Replication of an origin containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci U S A 76, 1648–1652.[CrossRef]
    [Google Scholar]
  19. Fraser, G. M., Bennett, J. C. Q. & Hughes, C. ( 1999; ). Substrate-specific binding of hook-associated proteins by FlgN and FliT, putative chaperones for flagellum assembly. Mol Microbiol 32, 569–580.[CrossRef]
    [Google Scholar]
  20. Höflich, G., Wiehe, W. & Hecht-Buchholz, C. ( 1995; ). Rhizosphere colonization of different crops with growth promoting Pseudomonas and Rhizobium bacteria. Microbiol Res 150, 139–147.[CrossRef]
    [Google Scholar]
  21. Jyot, J., Dasgupta, N. & Ramphal, R. ( 2002; ). fleQ, the major flagellar gene regulator in Pseudomonas aeruginosa, binds to enhancer sites located either upstream or atypically downstream of the RpoN binding site. J Bacteriol 184, 5251–5260.[CrossRef]
    [Google Scholar]
  22. Kalogeraki, V. S. & Winans, S. C. ( 1997; ). Suicide plasmids containing promoterless reporter genes can simultaneously disrupt and create fusions to target genes of diverse bacteria. Gene 188, 69–75.[CrossRef]
    [Google Scholar]
  23. Karlson, U., Dowling, D., O'Gara, F., Rivilla, R., Bittens, M., Francesconi, S., Pritchard, H. & Pedersen, H. C. ( 1998; ). Development of self-contained plant/GMM systems for soil bioremediation, In Past, Present and Future Risk Assessment when using GMOs, pp. 23–31. Edited by G. E. de Vries. Overschild, NL: ProBio Partners.
  24. Labes, M., Pühler, A. & Simon, R. ( 1990; ). A new family of RSF1010-derived expression and lac-fusion broad-host-range vectors for Gram-negative bacteria. Gene 89, 37–46.[CrossRef]
    [Google Scholar]
  25. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277, 680–685.
    [Google Scholar]
  26. Lugtenberg, B. J. J. & Dekkers, L. C. ( 1999; ). What makes Pseudomonas bacteria rhizosphere competent? Environ Microbiol 1, 9–13.[CrossRef]
    [Google Scholar]
  27. Lugtenberg, B. J. J., Dekkers, L. & Bloemberg, G. V. ( 2001; ). Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39, 461–490.[CrossRef]
    [Google Scholar]
  28. Marshall, B., Robleto, E. A., Wetzler, R., Kulle, P., Casaz, P. & Levy, S. B. ( 2001; ). The adnA transcriptional factor affects persistence and spread of Pseudomonas fluorescens under natural field conditions. Appl Environ Microbiol 67, 852–857.[CrossRef]
    [Google Scholar]
  29. McGee, K., Hörstedt, P. & Milton, D. L. ( 1996; ). Identification and characterization of additional flagellin genes from Vibrio anguillarum. J Bacteriol 178, 5188–5198.
    [Google Scholar]
  30. Naseby, D. C. & Lynch, J. M. ( 1998; ). Impact of wild-type and genetically modified Pseudomonas fluorescens on soil enzyme activities and microbial population structure in the rhizosphere of pea. Mol Ecol 7, 617–625.[CrossRef]
    [Google Scholar]
  31. Nelson, K. E., Weinel, C., Paulsen, I. T. & 40 other authors ( 2002; ). Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4, 799–808.[CrossRef]
    [Google Scholar]
  32. Ozin, A. J., Claret, L., Auvray, F. & Hughes, C. ( 2003; ). The FliS chaperone selectively binds the disordered flagellin C-terminal domain central to polymerisation. FEMS Microbiol Lett 219, 219–224.[CrossRef]
    [Google Scholar]
  33. Rainey, P. B. ( 1999; ). Adaptation of Pseudomonas fluorescens to the plant rhizosphere. Environ Microbiol 1, 243–257.[CrossRef]
    [Google Scholar]
  34. Ramos, J. L., Duque, E. & Ramos-González, M. I. ( 1991; ). Survival in soils of an herbicide-resistant Pseudomonas putida strain bearing a recombinant Tol plasmid. Appl Environ Microbiol 57, 260–266.
    [Google Scholar]
  35. Robleto, E. A., López-Hernández, I., Silby, M. W. & Levy, S. B. ( 2003; ). Genetic analysis of the AdnA regulon in Pseudomonas fluorescens: nonessential role of flagella in adhesion to sand and biofilm formation. J Bacteriol 185, 453–460.[CrossRef]
    [Google Scholar]
  36. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY, USA: Cold Spring Harbor Laboratory.
  37. Sanchez-Contreras, M., Martin, M. Villacieros M., O'Gara, F., Bonilla, I. & Rivilla, R. ( 2002; ). Phenotypic selection and phase variation occur during alfalfa root colonization by Pseudomonas fluorescens F113. J Bacteriol 184, 1587–1596.[CrossRef]
    [Google Scholar]
  38. Scher, F. M. & Baker, R. ( 1982; ). Effects of Pseudomonas putida and a synthetic iron chelator on induction of soil supressiveness to Fusarium wilt pathogens. Phytopathology 72, 1567–1573.[CrossRef]
    [Google Scholar]
  39. Shanahan, P., Borro, A., O'Gara, F. & Glennon, J. D. ( 1992; ). Isolation, trace enrichment and liquid-chromatographic analysis of diacetylphloroglucinol in culture and soil samples using UV and amperometric detection. J Chromatogr 606, 171–177.[CrossRef]
    [Google Scholar]
  40. Simons, M., Vanderbij, A. J., Brand, I., Deweger, L. A., Wijffelman, C. A. & Lugtenberg, B. J. J. ( 1996; ). Gnotobiotic system for studying rhizosphere colonization by plant growth-promoting Pseudomonas bacteria. Mol Plant–Microbe Interact 9, 600–607.[CrossRef]
    [Google Scholar]
  41. Stover, K. C., Pham, X. Q., Erwin, A. L. & 28 other authors ( 2000; ). Complete genome sequence of Pseudomonas aeruginosa PAO1: an opportunistic pathogen. Nature 406, 959–964.[CrossRef]
    [Google Scholar]
  42. Villacieros, M., Power, B., Sanchez-Contreras, M. & 8 other authors ( 2003; ). Colonization behaviour of Pseudomonas fluorescens and Sinorhizobium meliloti in the alfalfa (Medicago sativa) rhizosphere. Plant Soil 251, 47–54.[CrossRef]
    [Google Scholar]
  43. Walsh, U. F. J. P., Morrissey, J. P. & O'Gara, F. ( 2001; ). Pseudomonas for biocontrol of phytopathogens: from functional genomics to commercial exploitation. Curr Opin Biotechnol 12, 289–295.[CrossRef]
    [Google Scholar]
  44. Wattiau, P., Woestyn, S. & Cornelis, G. R. ( 1996; ). Customized secretion chaperones in pathogenic bacteria. Mol Microbiol 20, 255–262.[CrossRef]
    [Google Scholar]
  45. Yee, D. C., Maynard, J. A. & Wood, T. K. ( 1998; ). Rhizoremediation of trichloroethylene by a recombinant, root-colonizing Pseudomonas fluorescens strain expressing toluene ortho-monooxygenase constitutively. Appl Environ Microbiol 64, 112–118.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27362-0
Loading
/content/journal/micro/10.1099/mic.0.27362-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error