1887

Abstract

In cytokinesis is efficiently achieved when a concerted series of events take place at the neck region, leading to septum formation. Here it is shown that Bni4p plays a crucial role in this process. Δ mutants contain normal amounts of chitin and show normal chitin synthase III (CSIII) activity, but are partially resistant to Calcofluor White (CFW), probably due to the striking pattern of chitin distribution. CFW vital staining shows that chitin is synthesized in daughter cells and that it is also asymmetrically deposited at the mother-side of the neck in large-budded cells. This specific pattern coincides with that of Chs4p and Chs3p proteins. Alternatively, staining of unbudded cultures confirmed that Bni4p directs early chitin ring assembly, but is no longer required for the chitin deposition that occurs late in the cell cycle at cytokinesis. Consequently, this work provides a strategy to genetically discriminate between the absence of chitin synthesis (Δ mutant) and failure in chitin ring assembly (Δ mutants). The characterization of double mutants affected in chitin synthesis and primary septum (PS) assembly (Δ and Δ) provides evidence for the cooperation of Bni4p in PS formation besides its role in chitin ring assembly. In addition, it is shown that the chitin ring, but not the late deposition of chitin, cooperates in the correct assembly of the actomyosin ring and the PS when the biological function of the septins is compromised. We conclude that Bni4p is not only required for the assembly of the chitin ring, but is also involved in septum architecture and the maintenance of neck integrity.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27352-0
2004-10-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/10/mic1503229.html?itemId=/content/journal/micro/10.1099/mic.0.27352-0&mimeType=html&fmt=ahah

References

  1. Baladron, V., Ufano, S., Duenas, E., Martin-Cuadrado, A. B., del Rey, F. & Vazquez de Aldana, C. R. ( 2002; ). Eng1p, an endo-1,3-beta-glucanase localized at the daughter side of the septum, is involved in cell separation in Saccharomyces cerevisiae. Eukaryot Cell 1, 774–786.[CrossRef]
    [Google Scholar]
  2. Bi, E. ( 2001; ). Cytokinesis in budding yeast: the relationship between actomyosin ring function and septum formation. Cell Struct Funct 26, 529–537.[CrossRef]
    [Google Scholar]
  3. Cabib, E. & Schmidt, M. ( 2003; ). Chitin synthase III activity, but not the chitin ring, is required for remedial septa formation in budding yeast. FEMS Microbiol Lett 29, 299–305.
    [Google Scholar]
  4. Cabib, E., Shaw, J. A., Mol, P. C., Bowers, B. & Choi, W. J. ( 1996; ). Chitin biosynthesis and morphogenetic processes. In The Mycota. Biochemistry and Molecular Biology, vol. III, pp. 243–267. Edited by R. Brambl & G. A. Marzluf. Berlin, Heidelberg: Springer.
  5. Cabib, E., Roh, D. H., Schmidt, M., Crotti, L. B. & Varma, A. ( 2001; ). The yeast cell wall and septum as paradigms of cell growth and morphogenesis. J Biol Chem 276, 19679–19682.[CrossRef]
    [Google Scholar]
  6. Choi, W. & Cabib, E. ( 1994; ). The use of divalent cations and pH for the determination of specific yeast chitin synthases. Anal Biochem 219, 368–372.[CrossRef]
    [Google Scholar]
  7. Choi, W., Sburlati, A. & Cabib, E. ( 1994; ). Chitin synthase 3 from yeast has zymogenic properties that depend on both the CAL1 and CAL3 genes. Proc Natl Acad Sci U S A 91, 4727–4730.[CrossRef]
    [Google Scholar]
  8. Cid, V. J., Duran, A., del Rey, F., Snyder, M. P., Nombela, C. & Sanchez, M. ( 1995; ). Molecular basis of cell integrity and morphogenesis in Saccharomyces cerevisiae. Microbiol Rev 59, 345–386.
    [Google Scholar]
  9. Cid, V. J., Adamikova, L., Cenamor, R., Molina, M., Sanchez, M. & Nombela, C. ( 1998; ). Cell integrity and morphogenesis in a budding yeast septin mutant. Microbiology 144, 3463–3474.[CrossRef]
    [Google Scholar]
  10. Colman-Lerner, A., Chin, T. E. & Brent, R. ( 2001; ). Yeast Cbk1 and Mob2 activate daughter-specific genetic programs to induce asymmetric cell fates. Cell 107, 739–750.[CrossRef]
    [Google Scholar]
  11. DeMarini, D. J., Adams, A. E. M., Fares, H., De Virgilio, C., Valle, G., Chuang, J. S. & Pringle, J. R. ( 1997; ). A septin-based hierarchy of proteins required for localized deposition of chitin in the Saccharomyces cerevisiae cell wall. J Cell Biol 139, 75–93.[CrossRef]
    [Google Scholar]
  12. Fernandez-Abalos, J. M., Fox, H., Pitt, C., Wells, B. & Doonan, J. H. ( 1998; ). Plant-adapted green fluorescent protein is a versatile vital reporter for gene expression, protein localization and mitosis in the filamentous fungus, Aspergillus nidulans. Mol Microbiol 27, 121–130.[CrossRef]
    [Google Scholar]
  13. Garcia-Rodriguez, L. J., Duran, A. & Roncero, C. ( 2000a; ). Calcofluor antifungal action depends on chitin and a functional high-osmolarity glycerol response (HOG) pathway: evidence for a physiological role of the Saccharomyces cerevisiae HOG pathway under noninducing conditions. J Bacteriol 182, 2428–2437.[CrossRef]
    [Google Scholar]
  14. Garcia-Rodriguez, L. J., Trilla, J. A., Castro, C., Valdivieso, A., Duran, A. & Roncero, C. ( 2000b; ). Characterization of the chitin biosynthesis process as a compensatory mechanism in the fks1 mutant of Saccharomyces cerevisiae. FEBS Lett 478, 84–88.[CrossRef]
    [Google Scholar]
  15. Kaiser, C. A., Gimeno, R. E. & Shaywitz, D. A. ( 1997; ). Proteins secretion, membrane biogenesis, and endocytosis. In The Molecular and Cellular Biology of the Yeast Saccharomyces, vol. III, pp. 91–228. Edited by E. W. Jones, J. R. Pringle, & J. R. Broach. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  16. Kollar, R., Petrakova, E., Ashwell, G., Robbins, P. W. & Cabib, E. ( 1995; ). Architecture of the yeast cell wall. The linkage between chitin and beta(1→3)-glucan. J Biol Chem 270, 1170–1178.[CrossRef]
    [Google Scholar]
  17. Kozubowski, L., Panek, H., Rosenthal, A., Bloecher, A., DeMarini, D. J. & Tatchell, K. ( 2003; ). A Bni4-Glc7 phosphatase complex that recruits chitin synthase to the site of bud emergence. Mol Biol Cell 14, 26–39.[CrossRef]
    [Google Scholar]
  18. Lippincott, J. & Li, R. ( 1998; ). Sequential assembly of myosin II, and IQGAP-like protein, and filamentous actin to a ring structure involved in budding yeast cytokinesis. J Cell Biol 140, 355–366.[CrossRef]
    [Google Scholar]
  19. Longtine, M. S. & Bi, E. ( 2003; ). Regulation of septin organization and function in yeast. Trends Cell Biol 13, 403–409.[CrossRef]
    [Google Scholar]
  20. Molano, J., Bowers, B. & Cabib, E. ( 1980; ). Distribution of chitin in the yeast cell wall: an ultrastructural and chemical study. J Biol Chem 85, 199–212.
    [Google Scholar]
  21. Ono, N., Yabe, T., Sudoh, M., Nakajima, T., Yamada-Okabe, T., Arisawa, M. & Yamada-Okabe, H. ( 2000; ). The yeast Chs4p protein stimulates the trypsin-sensitive activity of chitin synthase 3 through an apparent protein–protein interaction. Microbiology 146, 385–391.
    [Google Scholar]
  22. Orlean, P. ( 1997; ). Biogenesis of yeast wall and surface components. In The Molecular and Cellular Biology of the Yeast Saccharomyces, vol. III, pp. 229–362. Edited by E. W. Jones, J. R. Pringle, & J. R. Broach. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  23. Rodriguez-Pena, J. M., Cid, V. J., Arroyo, J. & Nombela, C. ( 2000; ). A novel family of cell wall-related proteins regulated differently during the yeast life cycle. Mol Cell Biol 20, 3245–3255.[CrossRef]
    [Google Scholar]
  24. Rodriguez-Pena, J. M., Rodriguez, C., Alvarez, A., Nombela, C. & Arroyo, J. ( 2002; ). Mechanisms for targeting of the Saccharomyces cerevisiae GPI-anchored cell wall protein Crh2p to polarised growth sites. J Cell Sci 115, 2549–2558.
    [Google Scholar]
  25. Roh, D. H., Bowers, B., Schmidt, M. & Cabib, E. ( 2002; ). The septation apparatus, an autonomous system in budding yeast. Mol Biol Cell 13, 2747–2759.[CrossRef]
    [Google Scholar]
  26. Roncero, C. ( 2002; ). The genetic complexity of chitin synthesis in fungi. Curr Genet 41, 367–378.[CrossRef]
    [Google Scholar]
  27. Roncero, C. & Duran, A. ( 1985; ). Effect of Calcofluor white and Congo red on fungal wall morphogenesis: in vivo activation of chitin polymerization. J Bacteriol 163, 1180–1185.
    [Google Scholar]
  28. Rose, M., Novick, P., Thomas, J., Bostein, D. & Fink, G. ( 1987; ). A Saccharomyces cerevisiae genomic plasmid bank based on a centromere-containing shuttle vector. Gene 60, 237–243.[CrossRef]
    [Google Scholar]
  29. Rose, M. D., Winston, F. & Hieter, P. ( 1990; ). Methods in Yeast Genetics: a Laboratory Course Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  30. Rothstein, R. J. ( 1983; ). One-step gene disruption in yeast. Methods Enzymol 101, 202–211.
    [Google Scholar]
  31. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  32. Santos, B. & Snyder, M. ( 1997; ). Targeting of chitin synthase 3 to polarized growth sites in yeast requires Chs5p and Myo2p. J Cell Biol 136, 95–110.[CrossRef]
    [Google Scholar]
  33. Sanz, M., Trilla, J. A., Duran, A. & Roncero, C. ( 2002; ). Control of chitin synthesis through Shc1p, a functional homologue of Chs4p specifically induced during sporulation. Mol Microbiol 43, 1183–1195.[CrossRef]
    [Google Scholar]
  34. Schmidt, M., Bowers, B., Varma, A., Roh, D. H. & Cabib, E. ( 2002; ). In budding yeast, contraction of the actomyosin ring and formation of the primary septum at cytokinesis depend on each other. J Cell Sci 115, 293–302.
    [Google Scholar]
  35. Schmidt, M., Varma, A., Drgon, T., Bowers, B. & Cabib, E. ( 2003; ). Septins, under Cla4p regulation, and the chitin ring are required for neck integrity in budding yeast. Mol Biol Cell 14, 2128–2141.[CrossRef]
    [Google Scholar]
  36. Shaw, J. A., Mol, P. C., Bowers, B., Silverman, S. J., Valdivieso, M. H., Duran, A. & Cabib, E. ( 1991; ). The function of chitin synthases 2 and 3 in the Saccharomyces cerevisiae cell cycle. J Cell Biol 114, 111–123.[CrossRef]
    [Google Scholar]
  37. Tolliday, N., Pitcher, M. & Li, R. ( 2003; ). Direct evidence for a critical role of myosin II in budding yeast cytokinesis and the evolvability of new cytokinetic mechanisms in the absence of myosin II. Mol Biol Cell 14, 798–809.[CrossRef]
    [Google Scholar]
  38. Tong, A. H., Lesage, G., Bader, G. D. & 47 other authors ( 2004; ). Global mapping of the yeast genetic interaction network. Science 303, 808–813.[CrossRef]
    [Google Scholar]
  39. Trilla, J. A., Cos, T., Duran, A. & Roncero, C. ( 1997; ). Characterisation of CHS4 (CAL2), a gene of Saccharomyces cerevisiae involved in chitin biosynthesis and allelic to SKT5 and CSD4. Yeast 13, 795–807.[CrossRef]
    [Google Scholar]
  40. Wang, H., Tang, X., Liu, J., Trautmann, S., Balasundaram, D., McCollum, D. & Balasubramanian, M. K. ( 2002; ). The multiprotein exocyst complex is essential for cell separation in Schizosaccharomyces pombe. Mol Biol Cell 13, 515–529.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27352-0
Loading
/content/journal/micro/10.1099/mic.0.27352-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error